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Introduction



Modelling product demand
Discrete choice models are the workhorse in demand estimation with random utility

— Utility is driven by observables + unobservable idiosyncratic taste shock, typically i.i.d.

— Agents choose the alternative with highest utility
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Modelling product demand

Discrete choice models are the workhorse in demand estimation with random utility
— Utility is driven by observables + unobservable idiosyncratic taste shock, typically i.i.d.
— Agents choose the alternative with highest utility

Examples:
— Industrial Organization: market shares and Logit shocks
— Trade: expenditure shares and Fréchet shocks

Pros:

— Closed form solutions of choice probability + low number of parameters

Cons:

— Restricted substitution patterns + requires independence assumptions across products
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Toward more flexible substitution patterns
Some proposed alternatives

— Random Coefficients: Logit with heterogeneity in preferences across consumers

+ Flexible substitution patterns

- Non-linear estimation: numerical integration, no closed-form demand, numerical instability
Dube, Fox and Su (2012), Knittel and Metaxoglou (2014)

- Distributional assumptions on heterogeneity

— Nested Structures: Natural extension of i.i.d. shocks

+ Closed form solutions for choice probability

+ Suited to capture market segmentation

- Nests need to be specified ex-ante

- Still somewhat restrictive substitution patterns
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This paper: Estimating nests in discrete choice models

Methodology to estimate the nest structure as well as preference parameters

Nest structure is recovered from aggregate share data

Two-step estimation procedure:

1. Use k-means clustering to estimate the nest structure
2. Estimate model parameters as if the groups where known

We exploit the structure of the model, the availability of many markets and of many products
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Empirical model



Discrete choice model with nested Logit shocks

— Consider the indirect utility model for agent / when choosing j:

Vij = 6j + &jj

— Choice of j based on the maximization of the utiliy:

B =P(Vy> Vi Vi #))
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Discrete choice model with nested Logit shocks

— Consider the indirect utility model for agent / when choosing j:

Vij = 6j + &jj

— Choice of j based on the maximization of the utiliy:

B =P(Vy> Vi Vi #))

— Assume products are partitioned in K groups, and (g1, ..., &;y) ~ exp( - Zf:I(ZJ-eBK e_rrTJW)(’kw):

§; 5 .
) d_ | k()
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21:1 (ZdeBl er)
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Nested Logit as sequential choice

Commute

Choice of option j within nest k()

/ A 9 Od_ k()

-4 KD\

Public Private P: = ek (ZdEBk(D € )
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COICICENCH CICD Pikcy Foy

7/34




Nested Logit and substitution patterns

Correlation across products within nest:

Vij = 6} + Sy + €

— Conditional on nest, shocks are still i.i.d.
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Nested Logit and substitution patterns

Correlation across products within nest:
Vij = 6j + Sy + €ij
— Conditional on nest, shocks are still i.i.d.

Group correlation allows for more flexible substitution patterns

& = | PiTipr ifJ" ¢ B
J (O-k — 1)%]?‘];”([)1/ —Bij/pj/ |f_], c BkU)

8/34



Some notation

9q
K

od I
Define IVK = Y4, ek and IV = 2K (Syep e )”
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Some notation

9q
K

od I
Define IVK = Y4, ek and IV = 2K (Syep e )”

Then:

5 Od_ o kG) 5j kG
e (Zdesy, e™)” ek (k)T ]
Fi= - %

% | vk 40!
ZdEBkU) er v ZI:] (ZdEB[ € )

Taking logs:

o, . .
logP; = UTJm + (0% — 1) log VKV — log IV
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2. Empirical model
2.1 ldentification



Intuition of nest identification

For simplicity, assume ¢; = Sx;, k(0) = {0} and 6¢ = 0.
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For simplicity, assume ¢; = Sx;, k(0) = {0} and 6¢ = 0.
Denote 6y = &5 and Ai(j) = (%P = 1) log IVKO),

It follows:
Bxj
okG)

Ok(Xj + Ak(j)

+ (" — 1) log IVKW)

logP; —log P

= Key observation: Group-specific intercept and slope common for products in the same group!

= Intuition: The marginal effect of extra x; varies by nest
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Introducing markets, error, and prices

Letj =0,1, ..., Jdenote products, m = 1, ..., M markets and p;, prices, so that:

5jm = ﬁppjm +BXij + ‘fjmv
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Introducing markets, error, and prices

Letj =0,1, ..., Jdenote products, m = 1, ..., M markets and p;, prices, so that:

5jm = ﬁppjm +BXij + ‘fjmv
Our estimation equation becomes:
10g Pjm = 10g Pory = B pjm + BED s + 459 + &1,

k P k(j X k k
where g5 = 'Gko), k0 = fku), D = (kD — 1) 1ogIVEY, and & = kw

For now, let’s assume E[&jmpjm] = 0
— Don't worry, we will relax this later...
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2. Empirical model

2.2 Estimation



Estimation of Groups

Group-fixed effect estimator defined by the following clustering problem:

J

arg min E § 10g ('BPme+’8XXJm+/lk))
k(D),..., k(J) m:1J1

1 K

BBl

Combinatorial, non-convex problem!
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Estimation of Groups

Group-fixed effect estimator defined by the following clustering problem:

arg min Z Z log (,BPme +,8Xme + Ak ))
KD, kD) ) 5
g pkal, Ak

Combinatorial, non-convex problem!

Solution: two-step algorithm
1. Classify products using clustering algorithm following Bonhomme and Manresa (2015)

2. Conditional on classification, estimate preference parameters 8 and o following Berry (1994)

Why two steps? 12/34



Two-step strategy

First Step: Classification (Bonhomme and Manresa, 2015)

1. Let ("0, ..., BKYO, /1{('0, o /1,’\(/,'0) be a starting value.
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Two-step strategy
First Step: Classification (Bonhomme and Manresa, 2015)
K,0 K,0 .
1. Let (B'0, .. R0, A1 ., A3,°) be a starting value.
2. For(B"s, ... ,ﬂK'S,/lf's, ,/l',\j,'s) , compute for all j € J:
M P; 2
kG = argmin 3" (log =2 = (B *pjm + BE*xjm + A15°))

Kell,....K) = Pom

to compute grouping structure 8°*!.
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First Step: Classification (Bonhomme and Manresa, 2015)
, K0 1K.0 K0 .
1. Let B0, ..., R0, A7, .., A},") be a starting value.
2. For(B"s, ... ,ﬂK'S,/lf's, ,/l',\j,'s) , compute for all j € J:
M
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Two-step strategy
First Step: Classification (Bonhomme and Manresa, 2015)

1 Let (B0, ..., g0, 210, . AX°) be a starting value.
2. For(B"s, ... ,ﬂK'S,/lf's, ,/l',\j,'s) , compute for all j € J:
M

P; 2
k() = argmin " (log 5 = (B pjm + B xm + A8°))
kefl,...K) 2= om
to compute grouping structure 8°*!.

3. Compute:

(BI'SHr ,,BK'SH,/l{('SH, ...,/15\;'“]) _

. Pj k(j),s+1 k(j),s+1 k(),s+1y\2
arg min Z Z (log —P;m — B pjm + B iy + AR ))
m

Bl B A 2 mel

4. Repeat until convergence of parameters.
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Two-step strategy

Second step estimation

Once we have grouping structure {k(1), ..., k(J)}, estimate 5 and o as if those were known
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Second step estimation

Once we have grouping structure {k(1), ..., k(J)}, estimate 5 and o as if those were known

We follow Berry (1994):

P; i
log Im _ BpPjm + BxXjm + (k) — D 1og Pj mik() + &jm
]P)Om

Observation: Need to instrument for log P; i x(j), where
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Two-step strategy

Second step estimation

Once we have grouping structure {k(1), ..., k(J)}, estimate 5 and o as if those were known

We follow Berry (1994):

P; i
log Im _ BpPjm + BxXjm + (k) — D 1og Pj mik() + &jm
]P)Om

Observation: Need to instrument for log P; i x(j), where

BpPjm*BxXjm
e (rk(j> %
. PR L= di
]P)J,m|k(_l) — - — ZJm = lOg( § e m)
Sk i
ZdGBk(j) € ok d?&J

de Bk(j)
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Statistical Properties



Asymptotic Experiment and Conditions
when Nests are Unknown

1. Let J — 0o, M — o0, and K fixed.

We abstract from the noise in estimation in shares coming from a finite population of consumers

We consider balanced nests: Jx = Oy(J) for k = 1, ... K, where Ji = |By|

H LN

We consider a sequence (o715, .-, 0ok, )., such that:

(i) ook €(0,1),

(II) 00¢,) — O0k,J = %,Where Cok,J — Cok eRasJ— 00,

(i) oo¢,y — 0or Where 0 < oo, < 1 for all €.

5. + Additional regularity conditions

15/34



Asymptotic Experiment and Conditions
when Nests are Unknown

1. Let J — 0o, M — o0, and K fixed.

We abstract from the noise in estimation in shares coming from a finite population of consumers

We consider balanced nests: Jx = Oy(J) for k = 1, ... K, where Ji = |By|

H LN

We consider a sequence (o715, .-, 0ok, )., such that:

(i) oo,y €(0,1),
(II) 00¢,) — O0k,J = %, where Cok,J — Cok € RasJ— 00,

(i) oo¢,y — 0or Where 0 < oo, < 1 for all €.

5. + Additional regularity conditions

= Asymptotic equivalence with an estimator of the same model where the groups are known
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Intuition 1: Normalization and Compact Parameter Space

We re-write our model and multiply both sides of the equation by log J to obtain:

oy — 1 O
log JPjm, = f +log Pyym — log 5 Z exp( J/'(”)
0¢ == o0koj
J]

Sokgjm,J

where

8irm \\7
[2rean e z2)

[

00k
2ikeK (Zj’eBOk exp (J—M))

Egm =

The conditions ensure that é:()kojmv_j = Lokgjm in probability uniformly in m, where Sokojm is finite.
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Intuition 2: Misclassification probability
Simplified Example

— Consider the following simplified model with G = 2:
Yim = az’* + Vim, ki € {1,2}.
— We characterize the misclassification probability:

Pr(ki(a) = 2/k7 = 1) = Pr((7; - @2)’ < (v; — )’

ki=1).
— If v, are iid normal (0, o%) and @; < a5 then this is:

VM
Pr(V;>al+a2—a’l") = 1-® —(“‘+“2—a;‘) ,
2 o 2

which vanishes exponentially fast as M increases.
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Monte Carlo



Monte Carlo Design: Data

Indirect utility 6, is given by
Ojm = BpPjm + BxXjm + Ejm,
where
- K=3witho =(0.2,0.3,0.6)
Classify products randonmly k(j) ~ U{1,2, 3}

- Bo=—-18,=1

k
Hp | iid. of [T 03
[ﬂ’;} N([O]'[OB | across k.

Xjm i N( 01 O )acrossj and m = &, explains 20% of variation in ¢,
fjm

0 0 05

s
s
0

1
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Results

Results of 50 Bootstrap iterations

ﬁp Be T (o) g3

J M Runtime Matched True -1 1 0.2 0.3 0.6

100 10 00:02 0.996 | Meanpg | -0.992  0.991 0.189  0.297 0.602
Std B 0.032 0.033 0.034 0.024 0.007

100 50 00:25 1.0 | MeanpB | -1.001 0.998 0.2 0.3 0.6
Std B 0.01 0.011 0.001 0.002 0.003

100 100 01:07 1.0 | Meanp -1.0 1.0 0.2 0.3 0.6
Stdp | 0.006 0.007 0.001 0.001 0.003

500 10 00:06 0.995 | Meanpg 1.0  0.998 0.199 0.298 0.6
Std B 0.015 0.02 0.006 0.016 0.003

500 50 07:14 1.0 | Meanp -1.0  0.999 0.2 0.3 0.6
Stdp | 0.004 0.004 0.0 0.001 0.001

500 100 29:24 1.0 | Meanp 1.0 0.999 0.2 0.3 0.6
Stdg | 0.003 0.003 0.0 0.0 0.001

1000 10 00:12 1.0 | Meanp 1.0 0.999 0.199 0.3 0.6
Sstd3 | 0.007 0.007 0.003 0.001 0.002

1000 50 44:57 1.0 | Meanp -1.0 1.0 0.2 0.3 0.6
Stdg | 0.002 0.003 0.0 0.0 0.001

1000 100 1:14 1.0 | Meanp 1.0 0.999 0.2 0.3 0.6
Stdg | 0.002 0.002 0.0 0.0 0.001
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Outline

5. Extensions
5.1 Choosing the number of groups



Choosing K: Cross-validation with Elbow method

So far we have assumed the number of groups is known.

In practice, we can also estimate the number of groups using a V-fold cross-validation procedure.

For k e {1, ..., K}
— Divide products into N equal subsets, Py, ..., Py.
— Pick subset P, and estimate grouping structure and grouping parameters in the other N — 1 parts.

Classify products across estimated groups in part P,, and compute out-of-sample MSE

MSE, (k) = J M Z Z(yf r’;(l)n k(J) )2

m=1 jeP,

Take average across /V folds:

P

MSE (k) = % Z MSE, (k)
n=1

Choose k according to

= {k(j)|where slope of MSE (k) changes} 20/34



Cross validation: Results

K=3,J=100,N=5

s 10 Markets s 50 Markets 8 100 Markets
a7 a7 a7
= = =
@ @ @
=y o Se .
g6 g6 g6
] ] 3
%] wv wv
Y Y N
cs g5 S5
=1 3 3
(] o o

4 4 4-

2 3! 4 5 6 2 4 2 4
Groups Groups Groups
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5. Extensions

5.2 Endogenous prices



Endogenous prices

So far, we have assumed E[£,pjm] = 0.
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Endogenous prices

So far, we have assumed E[£mpjm] = 0
Relax that and assume z;, is a valid instrument for p;, so that E[£m|zjm, Xjm] = 0

In this case, classify on x;;, and zj;,:

1. For (B'*, ... ,ﬁK'S,/lf's, ,/lﬁ's) , compute for all j € J:

M
. . Pim
k()™ = argmin Z (log = B, (BE> zjm + B Xjm + A% 5))

2. Compute:

M
P o
arg min Z Z (log P; k(J) 5+l +ﬁk(1) 5+l Xjm + J;U),SH))
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Endogenous prices

So far, we have assumed E[£mpjm] = 0
Relax that and assume z;, is a valid instrument for p;, so that E[£m|zjm, Xjm] = 0

In this case, classify on x;;, and zj;,:

1. For (', .., BKs, A1, ., A)5%) , compute for all j € J:
Y P
k(j)s+1 = arg min Z (log - (ﬁk SZJm +ﬁk SXJm + /lk 5))
ke(l,....K) 5= Pom
2. Compute:

J M
P; ) 5
arg mlin . Z Z (log Pﬂ k(/) s+l +ﬁk(1) sty Xjm + /lfnU)'SH))
B, ﬁK"ll ..... /IM j=1 m=1 m

3. Repeat until convergence of parameters. 22/34



Results

Results of 50 Bootstrap iterations

,3p Be o (%) g3

J M Runtime Matched True -1 1 0.2 0.3 0.6

100 10 00:02 0.964 | Meanp | -0.956 0.956 0.17 0.28 0.596
Std B 0.052 0.064 0.047 0.056 0.02

100 50 00:15 0.989 | Meanp | -0.998 0.999 0.197 0.296 0.596
Std g 0.015 0.019 0.021 0.029 0.03

100 100 01:45 1.0 | Meanp -1.0 1.001 0.2 0.3 0.6
Std g 0.007 0.005 0.001 0.001 0.002

500 10 00:16 0.993 | Meanp | -0.994 0.995 0.195 0.299 0.6
Std B 0.016  0.017 0.01 0.008 0.003

500 50 01:38 1.0 | Meanp -1.0 1.001 0.2 0.3 0.6
Stdg | 0.004 0.005 0.0 0.001 0.001

500 100 08:01 1.0 | Meanp -1.0 1.0 0.2 0.3 0.6
Stdg | 0.003 0.003 0.0 0.0 0.001

1000 10 00:29 0.996 | Meanp | -0.993 0.998 0.196 0.3 0.6
Std B 0.012 0.012 0.006 0.002 0.002

1000 50 05:1 0.986 | Meanp -1.001 1.0 0198 0.297 0.595
Stdp | 0.003 0.003 0.013 0.02 0.033

1000 100 16:15 0.962 | Meanp | -0.997 0.997 0,198 0.293 0.591
Std g 0.015 0.014 0.01 0.037 0.044
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5. Extensions

5.3 Typell EV error



Type Il EV error

Assume indirect utility is given by
Vijm = 6jm + Eijm,

where gjj, is distributed Type Il EV with some nesting structure given by By, ..., Bk.

24/34



Type Il EV error

Assume indirect utility is given by
Vijm = 6jm + Eijm,

where gjj, is distributed Type Il EV with some nesting structure given by By, ..., Bk.

Choice probabilities are given by:

0 0 k

e ST \O
U'k (rk
2] 4 k"

Ty i \9
ZJ 6],:, Zk(ZdEBk(J‘) 6}!7}‘(')

Pjm =

Then, nest can be recovered solving the following problem:

P m=1 j=1

24/34
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5. Extensions

5.4 More flexible empirical models



Individual heterogeneity with observed conditional shares

Denote individual heterogeneity by w ~ G(w)

6jm(w) = (ﬂp +ﬂp(0)))ij +BXij + 'fjm
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Individual heterogeneity with observed conditional shares

Denote individual heterogeneity by w ~ G(w)
6jm(w) = (Bp +Bp(w))ij +BXij + gjm

If G(w) discrete over types w! and P}m = Pn(jlw?) observed, then:

logP7, —log Py, = i+ (ke = Dlog IV

(Tkt(j)

so can classify even type-by-type.
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Individual heterogeneity with observed conditional shares

Denote individual heterogeneity by w ~ G(w)
6jm(w) = (Bp +Bp(w))ij +BXij + fjm

If G(w) discrete over types w! and IP’JFm = Pn(jlw?) observed, then:

logP7, —log Py, = i+ (ke = Dlog IV

(Tkt(j)

so can classify even type-by-type.

Can also solve joint problem across types to impose constraints, such as o () = o for all t.

25/34



Individual unobserved heterogeneity

If G(w) discrete over types w' and Pjn,(w") = Pm(jlw’) not observed, then:

arg min ZZ(PW ZP(w WOPjm(@h)),
A

k(D). k() ==
Jj=
1 K )1 K
B8R AL
where
Bojm(@h) B6 g (@t) ]
. e Th(j) (ZdeBkU)e Tk(j) )O'k(])_
]P)jm(a) ) = B0 gyt

K
Yot (Xde, € ¥ )7¥

Caveat: requires non-linear optimization!

Next: extend algorithm to BLP contraction?

(2)
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Higher-order nesting structure

Assume we have upstream nests given by Ay, ..., Ay, and downstream nests given by By, ...

In this case, choice probabilities can be written as:
Pjm = PjikGi),mPk(iintk), mP nck),m
Taking logs, it follows:

Pim

log =22 = B¥xim + (ok — 1) In Vi + (07 — 1) log IV
POm
so that
Pjm k
log =— =" Xjm + Ak.m
IP)Orn Y

, Bk.

— classify using same algorithm to get lower nest structure B, ... BK and parameters ,ék, /fk,m
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Higher-order nesting structure

Given Bl, BK, run modified version of Berry (1994):

P P;
10g =™ = B(Xjm — Xjrm) + (0% — 1) log 2™
Pjrm 1k,

where J, j’ € Bk = recover,@ and &, = construct plug-in estimation of (o — 1) log IV) m
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Higher-order nesting structure

Given Bl, BK, run modified version of Berry (1994):

Pjik,m

P
log = = B(Xjm — Xjm) + (¥ = 1) log
Pjrm 1k,

where J, j’ € Bk = recover,é and &, = construct plug-in estimation of (o — 1) log IV) m

Recall
Akom = (0K = D1og IV m + (0 — 1) 10g Vi), m,

= can run k-means clustering on /ik,m —(6k—1log li/k,m to recover groups A,

28/34



Application: US Automobile Data



US Automobile data

We use US Automobile data from BLP (1995)
— Data available from R-package hdm developed by Chernozhukov, Hansen & Spindler (2019)

Information on (essentially) all models marketed between 1971 and 1990
Total sample size is 2217 model/years representing 557 distinct models

We set different years as different markets

29/34



Panel construction

Models both enter and exit over this period =— unbalanced panel

Restrict panel to cars with:
— At least five years of data
— At least three consecutive years
— We are left with 82 products
We adapt our classification algorithm to allow for “missing data”:
— Products can enter and exit over time

— Group of products can also enter and exit over time!
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BLP Application: Choosing the number of groups

Cross Validation for BLP data

i OO N @

Out of Sample MSE
D

w
T

N
N
D
o -
[0

10 12

31/34



BLP Application: First-step Group Characteristics

Mean Std. 1 2 3 4 5 6 7 8
Shares 0.001 0.001 | 0.004 0.009 0.008 0.012 0.006 0.002 0.006 0.002
Price -0.741  6.898 | -3.679 -3.077 -1.694 -1.621 -0.688 -0.610 -0.292 0.211
Log HP -0.940 0.183 | -1.054 -0.973 -0.984 -0.976 -0.942 -0.876 -0.953 -0.915
Log Miles per $ | 0.767 0.320 | 0.919 0.623 0.653 0.650 0.823 0.641  0.610 0.642
AC 0.277 0.448 | 0.072 0.315 0.259 0.268 0.132 0.144  0.303 0.267
Log Space 0.239 0.164 | 0.096 0.315 0.259 0.282 0.176 0.180 0.303 0.281
Type Subcomp. Family Mid-size  Midsize Compact Sport  Family Full-size
of car affordable Premium  Luxury Luxury Luxury
# Products 82 7 1 " 15 12 8 12 6
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BLP Application: Second-step Results

Estimates Preference Parameters

B o
Price -0.064"**  (0.029)
Horse Power | -0.148 (0.176)
Miles per $ | 0.222 (0.187)
AC 0.162 (0.133)
Space 0.791 (0.775)

Estimates Within-Nest Correlation

Group
1 2 3 4 5 6 7 8
o 0.868*** 0.596™* 0.472*** 0.827** 0.722"* 0.836** 0.528™* (0.572"**
o (0.155) (0.277) (0.165) (0.104) (0.273) (0.139) (0.145) (0.173)
F 1st stage | 50.673 2.7697 6.241 6.320 6.963 16.311 11.805 11.748
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Conclusion and next steps



Much to do ahead

— Proof of asymptotic consistency for empirical model extensions
— Revisit Monte Carlo with more empirically relevant models
— Empirical applications:

— 1O: Currently working on Nielsen data focusing on ready-to-drink beverages
— Spatial:

= Labor markets clusters: Is NYC a closer substitute to SF or Newark?

> Defining market structure for spatial applications: what’s a neighborhood?
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Consistency of group estimation
Two key assumptions

— Group separation. For simplicity, assume simplest model:

ii.d.
~

logPjm = A" + &, with ke (1,2}, 22> ', &, "< N(O, 1)

It follows

M M
P(k() = 20k() = D = B( )" + &m = 2 < 3 (A +&m = A7)
m=1 m=1

o

M—co
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Consistency of group estimation
Two key assumptions
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ii.d.
~

logPjm = A" + &, with ke (1,2}, 22> ', &, "< N(O, 1)

It follows
M M
P(k() = 2lk() = 1) = B( 35" + &n = )’ < Y (A +&m = 1'7)
m=1 m=1

o

M—co

— Rank condition: Within-group variation in x for all groups
= separate ¥ from A¥
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One-step group estimation
Can combine steps 1+ 2 by solving the foIIowing constrained problem:

arg min Z Z (ijﬁ + A% ))

mlJ

where

Pam \_ 1k
Bk = b and A% =(ok - l)log( Z elog(%m) A”’).
dEBk
but substantial computational/theoretical burden due to non-linear constraints.

Another option is to use Berry inversion directly:

arg min Z Z log — (xjmB + (1 - o ) log IPj, mIkU))
k(l) ..... k(J) ol
Bl

but need to adapt asymptotics to stochastic regressor that varies with group, P; mi«(j)-
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Statistics

Statistics of subsample of cars (N=82)

Mean Std.Dev. Median Min Max t-stat
Price =147 7.91 -2.532 -6.601 43.351 -1.06
Miles per Dollar 2.349 513 2.376 1.352 3.805 2.78
AC 299 409 0 0 1 0.49
Miles per Gallon 2.214 46 2.195 1.38 3.42 1.45
Space 1.266 187 1.223 .951 1.71 0.13
Horse Power 407 .069 .386 .308 727 -0.23
Market Share .001 .001 .001 0 .004  0.00
Yearly Observations | 9.085 4.264 7 5 20 10.42
Year Entry 1980  5.261 1983 1971 1986 -4.62
Year Exit 1989 .88 1990 1988 1990  20.41
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Statistics for Full Sample

Table: Average characteristics of all cars, (N = 557)

Mean Std.Dev. Median Min Max t-stat
Price .862  8.983 -2.516 -8.368 43.351 1.06
Miles per Dollar 2175  .641 2.094 1.055  6.437 -2.78
AC 275 424 0 0 1 -0.49
Miles per gallon 2133  .552 2.07 1 5.3 -1.45
Space 1.263 .216 1.223 .79 1.888 -0.13
Horse Power .409 .098 .385 .207 .888 0.23
Market Share .001 .001 0 0 0.006 0.00
Yearly Observations | 3.899 3.857 2 1 20 -10.42
Entry Year 1980 6.51 1981 1971 1990 4.62
Exit Year 1984  6.101 1986 1971 1990 -20.41
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