Urban Amenities

Urban Economics Association Summer School

Milena Almagro (Chicago Booth & NBER)

May 2023

Special thanks to Jonathan Dingel, Jessie Handbury, and Hans Koster for their help and suggestions!

Introduction

• Private:

• Private: Retail, restaurants...

- Private: Retail, restaurants...
- Public:

- Private: Retail, restaurants...
- Public: Parks, public schools...

- Private: Retail, restaurants...
- Public: Parks, public schools...
- Person-specific:

- Private: Retail, restaurants...
- Public: Parks, public schools...
- Person-specific: Social networks

Past decade: (some) amenities arise endogenously as a function of demographics \rightarrow Meaningful implications for sorting and inequality

Past decade: (some) amenities arise endogenously as a function of demographics \rightarrow Meaningful implications for sorting and inequality

More recently: opening the black box of endogenous amenities

Past decade: (some) amenities arise endogenously as a function of demographics \rightarrow Meaningful implications for sorting and inequality

More recently: opening the black box of endogenous amenities \rightarrow Mapping from demographics into location characteristics

Past decade: (some) amenities arise endogenously as a function of demographics → Meaningful implications for sorting and inequality

More recently: opening the black box of endogenous amenities \rightarrow Mapping from demographics into location characteristics

Let's start diving into this amenity journey!

Amenities as a residual

$$U_j = A_j + \alpha_w w_j - \alpha_r r_j$$

$$U_j = A_j + \alpha_w w_j - \alpha_r r_j$$

Spatial equilibrium implies utility must be equalized across space:

 $U_j = \overline{U} \quad \forall j$

$$U_j = A_j + \alpha_w w_j - \alpha_r r_j$$

Spatial equilibrium implies utility must be equalized across space:

$$U_j = \overline{U} \quad \forall j$$

Fundamentally, spatial equilibrium is a no-arbitrage condition

$$U_j = A_j + \alpha_w w_j - \alpha_r r_j$$

Spatial equilibrium implies utility must be equalized across space:

$$U_j = \overline{U} \quad \forall j$$

Fundamentally, spatial equilibrium is a no-arbitrage condition

Hence:

$$A_j = \bar{U} - \alpha_w w_j + \alpha_r r_j$$

 \implies Amenities A_j can be backed out as a residual

Implications of Spatial Equilibrium

$$\bar{U} = A_j + \alpha_w w_j - \alpha_r r_j$$

$$\bar{U} = A_j + \alpha_w w_j - \alpha_r r_j$$

Implications:

- Better amenities when wages are low or rents are high
- Holding amenities fixed, wages and rents are positively correlated

$$\bar{U} = A_j + \alpha_w w_j - \alpha_r r_j$$

Implications:

- Better amenities when wages are low or rents are high
- Holding amenities fixed, wages and rents are positively correlated

Motivates hedonic price regressions:

$$r_j = \frac{1}{\alpha_r} (A_j + \alpha_w w_h - \bar{U})$$

UEA Summer School 2023

• Santa Barbara: weather, outdoors...

- Santa Barbara: weather, outdoors...
- New York: restaurants, museums, nightlife...

- Santa Barbara: weather, outdoors...
- New York: restaurants, museums, nightlife...
- Chicago: 8 months of winter?

Some implications at odds with reality:

- Labor supply perfectly elastic \implies workers immediately and fully adjust to shocks
- If land is finite \implies local shocks fully capitalized in rents
- Utility equalized across space \implies no notion of welfare or spatial inequality

Moretti (2011): introduce mobility frictions as idiosyncratic shocks

$$U_j^i = A_j + \alpha_w w_j - \alpha_r r_j + \frac{\epsilon_j^i}{\epsilon_j},$$

with $\epsilon^i \sim G_\epsilon$

Moretti (2011): introduce mobility frictions as idiosyncratic shocks

$$U_j^i = A_j + \alpha_w w_j - \alpha_r r_j + \frac{\epsilon_j^i}{\epsilon_j^i},$$

with $\epsilon^i \sim G_\epsilon$

Choice of location is probabilistic

$$\mathbb{P}_{j}^{i} = \mathbb{P}(A_{j} + \alpha_{w} w_{j} - \alpha_{r} r_{j} + \epsilon_{j}^{i} \ge \max_{j'} A_{j'} + \alpha_{w} w_{j'} - \alpha_{r} r_{j'} + \epsilon_{j'}^{i})$$

Moretti (2011): introduce mobility frictions as idiosyncratic shocks

$$U_j^i = A_j + \alpha_w w_j - \alpha_r r_j + \frac{\epsilon_j^i}{\epsilon_j^i},$$

with $\epsilon^i \sim G_\epsilon$

Choice of location is probabilistic

$$\mathbb{P}_{j}^{i} = \mathbb{P}(A_{j} + \alpha_{w} w_{j} - \alpha_{r} r_{j} + \epsilon_{j}^{i} \geq \max_{j'} A_{j'} + \alpha_{w} w_{j'} - \alpha_{r} r_{j'} + \epsilon_{j'}^{i})$$

Additionally, one can allow for heterogeneous agents:

$$U^i_j = \boldsymbol{A}^i_j + \boldsymbol{\alpha}^i_w w_j - \boldsymbol{\alpha}^i_r r_j + \boldsymbol{\epsilon}^i_j,$$

Moretti (2011): introduce mobility frictions as idiosyncratic shocks

$$U_j^i = A_j + \alpha_w w_j - \alpha_r r_j + \frac{\epsilon_j^i}{\epsilon_j^i},$$

with $\epsilon^i \sim G_\epsilon$

Choice of location is probabilistic

$$\mathbb{P}_{j}^{i} = \mathbb{P}(A_{j} + \alpha_{w} w_{j} - \alpha_{r} r_{j} + \epsilon_{j}^{i} \ge \max_{j'} A_{j'} + \alpha_{w} w_{j'} - \alpha_{r} r_{j'} + \epsilon_{j'}^{i})$$

Additionally, one can allow for heterogeneous agents:

$$U^i_j = \boldsymbol{A}^i_j + \boldsymbol{\alpha}^i_{\boldsymbol{w}} \boldsymbol{w}_j - \boldsymbol{\alpha}^i_r \boldsymbol{r}_j + \boldsymbol{\epsilon}^i_j,$$

Links two approaches:

- Spatial equilibrium: Rosen (1979), Roback (1982), Glaeser (2008)...
- Discrete choice model of products with heterogenous agents: McFadden (1974), Berry, Levinsohn, and Pakes (1995)...

Endogenous location characteristics

Can the characteristics of a location A_i be a function of who chooses to live there?

Can the characteristics of a location A_j be a function of who chooses to live there?

$$A_j = f(D_j),$$
 where $D_j = \int \mathbb{1}\{j^*(i) = j\}di$

Can the characteristics of a location A_j be a function of who chooses to live there?

$$A_j = f(D_j), \quad \text{where} \quad D_j = \int \mathbb{1}\{j^*(i) = j\} di$$

Some examples:

Can the characteristics of a location A_j be a function of who chooses to live there?

$$A_j = f(D_j), \quad \text{where} \quad D_j = \int \mathbb{1}\{j^*(i) = j\} di$$

Some examples:

- Demographic composition
- Property taxes, local tax revenue collection
- School peers
- Public goods
- Consumption amenities
```
D_j(p,A) = S_j(p) \quad \forall j
```

```
D_j(p, A) = S_j(p) \quad \forall j
```

Similarly, endogenous location characteristics can be defined in the same way:

 $A_j = f(D_j(p, A))$

 $D_j(p, A) = S_j(p) \quad \forall j$

Similarly, endogenous location characteristics can be defined in the same way:

 $A_j = f(D_j(p, A))$

This notion was first introduced by Epple and Sieg (1999), Bayer and Timmins (2005, 2007)

 $D_j(p, A) = S_j(p) \quad \forall j$

Similarly, endogenous location characteristics can be defined in the same way:

 $A_j = f(D_j(p, A))$

This notion was first introduced by Epple and Sieg (1999), Bayer and Timmins (2005, 2007)

Why are endogenous location characteristics worth studying?

- Understand how amenities are formed
- Generates feedback loops potentially amplifying shocks
- Important consequences on spatial inequality

Assume that

$$U_j^i = A_j - \alpha_r r_j + \xi_j + \epsilon_j^i,$$

where

 $A_j = f(D_j(p, A, \xi)).$

Assume that

$$U_j^i = A_j - \alpha_r r_j + \xi_j + \epsilon_j^i,$$

where

 $A_j = f(D_j(p, A, \xi)).$

If $\epsilon_j^i \sim$ Type I EV, then:

$$\operatorname{og} \mathbb{P}_j - \operatorname{log} \mathbb{P}_0 = A_j - \alpha_r r_j + \xi_j,$$

where we have normalized $U_0 = 0$ with j = 0 represents living outside the country, city...

Assume that

$$U_j^i = A_j - \alpha_r r_j + \xi_j + \epsilon_j^i,$$

where

 $A_j = f(D_j(p, A, \xi)).$

If $\epsilon_j^i \sim$ Type I EV, then:

$$\operatorname{og} \mathbb{P}_j - \operatorname{log} \mathbb{P}_0 = A_j - \alpha_r r_j + \xi_j,$$

where we have normalized $U_0 = 0$ with j = 0 represents living outside the country, city...

We can estimate f and α_r using the previous equation!

Two endogeneity issues due to simultaneity:

• Rents r_j are equilibrium objects and thus a function of ξ_j

Two endogeneity issues due to simultaneity:

- Rents r_j are equilibrium objects and thus a function of ξ_j
- Similarly for amenities $A_j = f(D_j(p, A, \xi))!$

Two endogeneity issues due to simultaneity:

- Rents r_j are equilibrium objects and thus a function of ξ_j
- Similarly for amenities $A_j = f(D_j(p, A, \xi))!$

Several solutions:

- 1. Assume that conditional on enough things there is no more ξ_j
- 2. Instrumental variables: housing supply shifters
- 3. Calibration

Guerrieri, Hartley, and Hurst (2013): share of high income residents

Guerrieri, Hartley, and Hurst (2013): share of high income residents

Alhfeldt, Redding, Sturm, & Wolf (2015): share of residential land, determined in equilibrium

Guerrieri, Hartley, and Hurst (2013): share of high income residents

Alhfeldt, Redding, Sturm, & Wolf (2015): share of residential land, determined in equilibrium

Diamond (2016): share of high skill residents

Guerrieri, Hartley, and Hurst (2013): share of high income residents

Alhfeldt, Redding, Sturm, & Wolf (2015): share of residential land, determined in equilibrium

Diamond (2016): share of high skill residents

Couture, Gaubert, Handbury, and Hurst (2023): love of variety for number of neighborhoods, determined in equilibrium

Guerrieri, Hartley, and Hurst (2013): share of high income residents

Alhfeldt, Redding, Sturm, & Wolf (2015): share of residential land, determined in equilibrium

Diamond (2016): share of high skill residents

Couture, Gaubert, Handbury, and Hurst (2023): love of variety for number of neighborhoods, determined in equilibrium

Almagro and Dominguez-Iino (202?): local consumption amenities are the equilibrium outcome of a market for services

Utility function:

$$U_j^i = \alpha_x^i x_j - \alpha_r^i r_j + \alpha_d^i d_j + \epsilon_j^i,$$

where d_j is a vector of demographics, coefficients α^i can vary by demographic type of *i*

Utility function:

$$U_j^i = \alpha_x^i x_j - \alpha_r^i r_j + \alpha_d^i d_j + \epsilon_j^i,$$

where d_j is a vector of demographics, coefficients α^i can vary by demographic type of i

Observe:

share black_j =
$$\frac{\sum_{i} \mathbb{1}\{race(i) = black\} \cdot \mathbb{1}\{j^{*}(i) = j\}}{H_{j}}$$

Utility function:

$$U_j^i = \alpha_x^i x_j - \alpha_r^i r_j + \alpha_d^i d_j + \epsilon_j^i,$$

where d_j is a vector of demographics, coefficients α^i can vary by demographic type of i

Observe:

share black_j =
$$\frac{\sum_{i} \mathbb{1}\{race(i) = black\} \cdot \mathbb{1}\{j^{*}(i) = j\}}{H_{j}}$$

Reflection problem solved:

- Price instruments are exogenous characteristics of other neighborhoods (BFM/BLP instruments)
- Include boundary fixed effects and assume demographics continuous at the border

Unpacking the black-box of amenities: Almagro and Domínguez-lino (202?) Preference heterogeneity over amenities: different amenities cater to different groups

Preference heterogeneity over amenities: different amenities cater to different groups

Model the supply of amenities with differential entry responses

- Preferences externalities
- Berry and Waldfogel (1999), Waldfogel (2008, 2010), Couture and Handbury (2019)

Preference heterogeneity over amenities: different amenities cater to different groups

Model the supply of amenities with differential entry responses

- Preferences externalities
- Berry and Waldfogel (1999), Waldfogel (2008, 2010), Couture and Handbury (2019)

Example: Bars and Young professionals vs. Private day care and Families

- Dynamic spatial equilibrium model of a city with three components:
 - Heterogeneous, forward-looking households choose neighborhoods to live in within a city

- Dynamic spatial equilibrium model of a city with three components:
 - Heterogeneous, forward-looking households choose neighborhoods to live in within a city
 - Firms make entry decisions based on demographic composition and provide consumption amenities

- Dynamic spatial equilibrium model of a city with three components:
 - Heterogeneous, forward-looking households choose neighborhoods to live in within a city
 - Firms make entry decisions based on demographic composition and provide consumption amenities
 - Absentee landlords make supply decision about their rental units

- Dynamic spatial equilibrium model of a city with three components:
 - Heterogeneous, forward-looking households choose neighborhoods to live in within a city
 - Firms make entry decisions based on demographic composition and provide consumption amenities
 - Absentee landlords make supply decision about their rental units
- Structural estimation using Dutch micro-data + establishments + tourism and short-term rentals
 - Tourism flows into Amsterdam as quasi-experimental variation in demographic composition

- Dynamic spatial equilibrium model of a city with three components:
 - Heterogeneous, forward-looking households choose neighborhoods to live in within a city
 - Firms make entry decisions based on demographic composition and provide consumption amenities
 - Absentee landlords make supply decision about their rental units
- Structural estimation using Dutch micro-data + establishments + tourism and short-term rentals
 - Tourism flows into Amsterdam as quasi-experimental variation in demographic composition
- Counterfactuals:
 - Welfare implications of the "tourism shock"
 - Role of endogenous consumption amenities in transmitting the shock
 - Evaluate taxes on tourism

Introduction

Amenities as a residual

Endogenous location characteristics

Unpacking the black-box of amenities: Almagro and Domínguez-lino (202?)

Data patterns in Amsterdam

Structural model and estimation

Counterfactuals

Final discussion

Fact 1: Tourism in Amsterdam is dramatically increasing

Figure 1: Nightly visitors per 100 residents

Overnight visitors per 100 residents

Why Amsterdam?

Hotel beds per local resident (2011)

Commercial listing share of rental stock (2011)

Hotel beds per local resident (2013) 2.00 1.00 0.75 0.50 0.25 0.10

Commercial listing share of rental stock (2013)

2.00 1.00 0.75 0.50 0.25 0.10

Hotel beds per local resident (2015)

Commercial listing share of rental stock (2015)

Hotel beds per local resident (2017)

Commercial listing share of rental stock (2017)

2.00

1.00

Δ touristic amenities (2011–2017)

Note: Total growth for 2011-2017

%∆ nurseries (2011–2017)

Note: Total growth for 2011-2017
Differences by age:

Note: Total growth for 2011-2017

Note: Total growth for 2011-2017

Note: Total growth for 2011-2017

0.100

0.050

0.025

0.010

0.000

-0.010

-0.025

-0.050

-0.100

Fact 5: Commercial Airbnb listings have a significant impact on rent

	Ln (rent/m2)					
	OLS	IV	OLS	IV	OLS	IV
Ln (commercial Airbnb listings)	0.066***	0.090***	0.052***	0.114***	0.115***	0.190**
	(0.008)	(0.020)	(0.006)	(0.021)	(0.018)	(0.086)
Ln (housing stock)			-0.056**	-0.095***	-0.111***	-0.163***
			(0.027)	(0.028)	(0.028)	(0.060)
Ln (average income)			-0.492***	-0.490***	-0.353***	-0.313***
			(0.075)	(0.071)	(0.072)	(0.084)
Ln (high-skill population share)			0.330***	0.213***	-0.014	-0.143
			(0.053)	(0.061)	(0.100)	(0.186)
District-year FE					Х	Х
First stage F-stat		617.51		397.57		86.21
Observations	780	780	773	773	773	773
R2	0.154	0.133	0.422	0.330	0.579	0.546

Notes: Standard errors clustered at the neighborhood level in parenthesis.

Instrument: Worldwide Airbnb Popularity_t × Number of Historic Monuments_j

Introduction

Amenities as a residual

Endogenous location characteristics

Unpacking the black-box of amenities: Almagro and Domínguez-lino (202?)

Data patterns in Amsterdam

Structural model and estimation

Counterfactuals

Final discussion

UEA Summer School 2023

UEA Summer School 2023

UEA Summer School 2023

Urban Amenities 23 / 47

Defining heterogeneous households

Classifying households via k-means

- We are interested in distributional effects
 - \implies define household 'types'
- Large number of demographics
 - \implies country of origin, skill, income, housing tenancy, household composition
 - → correlation: high income households tend to be high skill
- Classifying using arbitrary groups may lead to groups with few observations:
 - \implies high income with low education
 - ⇒ small groups lead to noisy estimates

Our approach: k-means exploits pre-existing correlations and avoids non-representative groups

 \implies minimize the number of groups while maximizing separation across groups

Clustering results from k-means algorithm

	Homeowners		Renters		Social Housing Tenants	
Group	Older Families	Singles	Younger Families	Students	Immigrant Families	Dutch Low Income
Age	44.59	37.84	40.56	28.42	55.12	38.52
Share Children	0.93	0.12	0.65	0.13	0.53	0.43
Share Low-Skilled	3.20%	2.42%	6.09%	5.40%	99.91%	0.02%
Share Medium-Skilled	3.01%	5.87%	2.28%	11.33%	0.09%	16.95%
Share High-Skilled	93.79%	91.71%	91.65%	83.27%	0.00%	83.02
Share Dutch Indies	6.92%	6.59%	4.12%	4.07%	13.22%	12.41%
Share Dutch	64.41%	58.74%	53.13%	61.44%	24.86%	49.36%
Share Non-Western	18.76%	21.43%	21.64%	19.48%	57.96%	30.37%
Share Western	9.91%	13.23%	21.12%	15.01%	3.96%	7.87%
Household Income (€)	62,031.39	30,611.41	47,441.08	16,821.48	21,243.24	27,714.85
Income Pctl.	77.04	45.49	64.64	23.23	33.41	42.17
Number of Households	106,388	78,561	105,712	124,112	83,117	174,203

Modelling endogenous amenities

Type k residents have income w^k and pay r for one unit of housing

Type k residents have income w^k and pay r for one unit of housing

Consumption of amenities from residential location (Davis et al. (2019), Miyauchi et al. (2020))

Type k residents have income w^k and pay r for one unit of housing

Consumption of amenities from residential location (Davis et al. (2019), Miyauchi et al. (2020))

Firms i supply differentiated products across different sectors s (bars, food stores, etc.),

A consumer of type k with income w^k maximizes utility choosing q_{si} :

$$\max_{\{q_{is}\}_{is}} \prod_{s} \left(\left(\sum_{i=1}^{N_{s}} q_{is}^{\frac{\sigma_{s}-1}{\sigma_{s}}} \right)^{\frac{\sigma_{s}}{1-\sigma_{s}}} \right)^{\alpha_{s}^{k}} \quad \text{s.t.} \quad \sum_{i,s} p_{is} q_{is} = (1-\alpha_{h}^{k}) w^{k}$$

- CES preferences across firms *i*: within a sector *s* there is equal substitution across firms
- Cobb-Douglas preferences across sectors s: different substitution across sectors

Within a sector *s*, a location *j*, and a time period *t*: Monopolistic competition with free entry

Firms have identical MC \implies identical pricing decisions

Within a sector *s*, a location *j*, and a time period *t*: Monopolistic competition with free entry

Firms have identical MC \implies identical pricing decisions

Given Cobb-Douglas preferences, expenditure on sector *s*:

 $\alpha_{ks}(1-\alpha_h^k)w_t^k$

Within a sector *s*, a location *j*, and a time period *t*: Monopolistic competition with free entry

Firms have identical MC \implies identical pricing decisions

Given Cobb-Douglas preferences, expenditure on sector *s*:

 $\alpha_{ks}(1-\alpha_h^k)w_t^k$

Given identical prices, consumers splits expenditure equally across N_{sit} firms

$$\frac{\alpha_{ks}(1-\alpha_h^k)w_t^k}{N_{sit}}$$

Within a sector *s*, a location *j*, and a time period *t*: Monopolistic competition with free entry

Firms have identical MC \implies identical pricing decisions

Given Cobb-Douglas preferences, expenditure on sector *s*:

 $\alpha_{ks}(1-\alpha_h^k)w_t^k$

Given identical prices, consumers splits expenditure equally across N_{sit} firms

$$\frac{\alpha_{ks}(1-\alpha_h^k)w_t^k}{N_{sjt}}$$

Denote M_{it}^k number of type k residents. Selling profits of each firm are

$$\frac{1}{\sigma_s}\sum_k \frac{\alpha_{ks}(1-\alpha_h^k)w_t^k}{N_{sjt}}M_{jt}^k$$

Under free-entry condition profits are equal to operational cost F_{sjt} :

$$\frac{1}{\sigma_s N_{sjt}} \sum_k \alpha_{ks} (1 - \alpha_h^k) w_t^k M_{jt}^k = F_{sjt}$$

Assume unobservable cost has following functional form

 $F_{sjt} = \Lambda_j \Lambda_t N_{jt}^{\gamma}$

Assume unobservable cost has following functional form

$$F_{sjt} = \Lambda_j \Lambda_t N_{jt}^{\gamma}$$

Take following equation directly to the data

$$\log N_{sjt} = \lambda_j + \lambda_t + \gamma \log N_{jt} + \log \left(\sum_k \alpha_{ks} (1 - \alpha_h^k) w_t^k M_{jt}^k \right) + \xi_{sjt},$$

where ξ_{sjt} is unexplained variation from entry cost.

Assume unobservable cost has following functional form

$$F_{sjt} = \Lambda_j \Lambda_t N_{jt}^{\gamma}$$

Take following equation directly to the data

$$\log N_{sjt} = \lambda_j + \lambda_t + \gamma \log N_{jt} + \log \left(\sum_k \alpha_{ks} (1 - \alpha_h^k) w_t^k M_{jt}^k \right) + \xi_{sjt},$$

where ξ_{sjt} is unexplained variation from entry cost.

 M_{it}^k endogenous object. Address this concern by constructing demand shifters:

- Housing stock available across household types: owner-occupied, rental, social housing
- Number of hotel beds for tourists
- Interact each group's available housing stock with income group w_t^k

Amenity supply: constrained GMM results

$$\log N_{sjt} = \lambda_j + \lambda_t + \gamma \log N_{jt} + \log \left(\sum_k \alpha_{ks} (1 - \alpha_h^k) w_t^k M_{jt}^k \right) + \xi_{sjt}$$

Amenity supply: constrained GMM results

$$\log N_{sjt} = \lambda_j + \lambda_t + \gamma \log N_{jt} + \log \left(\sum_k \alpha_{ks} (1 - \alpha_h^k) w_t^k M_{jt}^k \right) + \xi_{sjt}$$

Group	Touristic Amenities	Restaurants	Café Bars	Food Stores	Non-Food Stores	Nurseries
Older families	59.944	0.0	0.0	0.0	2.271	415.243***
	[0.0,218.18]	[0.0,16.297]	[0.0,0.0]	[0.0,11.998]	[0.0,25.707]	[186.264,837.487]
Singles	364.062	59.441	0.0	52.182	0.0	0.0
	[0.0,833.441]	[0.0,148.899]	[0.0,0.0]	[0.0,167.529]	[0.0,43.415]	[0.0,0.0]
Younger families	0.0	0.0	3.543	29.255**	107.138***	387.489*
	[0.0,0.0]	[0.0,13.121]	[0.0,21.808]	[0.729,58.678]	[50.957,158.689]	[0.0,672.534]
Students	488.828*	199.533***	21.44	54.437	0.0	0.0
	[0.0,1072.092]	[76.883,288.674]	[0.0,40.371]	[0.0,129.194]	[0.0,0.0]	[0.0,729.872]
Immigrant Families	0.0	0.0	7.33***	38.676	43.796*	153.907
	[0.0,0.0]	[0.0,9.443]	[0.942,29.473]	[0.0,76.667]	[0.0,147.762]	[0.0,663.999]
Dutch Low-Income	0.0	0.0	0.0	0.0	0.0	0.0
	[0.0,137.308]	[0.0,22.976]	[0.0,0.0]	[0.0,36.584]	[0.0,0.0]	[0.0,0.0]
Tourists	435.917***	200.103***	113.284***	71.219***	368.742***	0.0
	[328.271,582.922]	[163.424,240.117]	[76.9,130.32]	[42.979,93.96]	[276.691,430.773]	[0.0,0.0]

Housing demand

At the beginning of period t, a household i of type k chooses

$$d_{it} = \begin{cases} j & \text{if moves into location } j \in \{0, 1, ..., J\}, \\ s & \text{if stays in the same house in location } j_{it-1}, \end{cases}$$

At the beginning of period t, a household i of type k chooses

$$d_{it} = \begin{cases} j & \text{if moves into location } j \in \{0, 1, ..., J\},\\ s & \text{if stays in the same house in location } j_{it-1}, \end{cases}$$

Whenever households move to a new house they incur moving costs

$$\mathsf{MC}^{k}(d, x_{it}) = \begin{cases} \mathsf{MC}_{0}^{k} + \mathsf{MC}_{1}^{k} \mathsf{dist}(j(d), j_{it-1}) & \text{if household moves} \\ 0 & \text{if household stays.} \end{cases}$$

At the beginning of period *t*, a household *i* of type *k* chooses

$$d_{it} = \begin{cases} j & \text{if moves into location } j \in \{0, 1, ..., J\},\\ s & \text{if stays in the same house in location } j_{it-1}, \end{cases}$$

Whenever households move to a new house they incur moving costs

$$\mathsf{MC}^{k}(d, x_{it}) = \begin{cases} \mathsf{MC}_{0}^{k} + \mathsf{MC}_{1}^{k} \mathsf{dist}(j(d), j_{it-1}) & \text{if household moves} \\ 0 & \text{if household stays.} \end{cases}$$

Household *i*'s indirect utility flow from decision *d* is

$$u_{t}^{k}(d, x_{it}) = \delta_{t}^{k} + \delta_{j(d)}^{k} + \delta_{\tau}^{k} \tau_{it} - \delta_{r}^{k} \log r_{j(d)t} + \delta_{a}^{k} \log a_{j(d)t} - \mathsf{MC}^{k}(d, x_{it}) + \xi_{jt}$$

The dynamic programming problem is

$$V_t^k(x_{it}, \epsilon_{it}) = \max_d u_t^k(d, x_{it}) + \epsilon_{itd} + \beta \mathbb{E}_t \Big[V_{t+1}^k(d, x_{it+1}, \epsilon_{it+1}) | d, x_{it}, \epsilon_{it} \Big]$$

The dynamic programming problem is

$$V_t^k(x_{it}, \epsilon_{it}) = \max_d u_t^k(d, x_{it}) + \epsilon_{itd} + \beta \mathbb{E}_t \Big[V_{t+1}^k(d, x_{it+1}, \epsilon_{it+1}) | d, x_{it}, \epsilon_{it} \Big]$$

Several identification issues:

- Continuation values are unobservable and are a function of prices and amenities (r, a)
- Simultaneity bias for prices and amenities (r, a) due to unobservable demand shocks ξ

$$u_t^k(d, x_{it}) = \delta_t^k + \delta_{j(d)}^k + \delta_\tau^k \tau_{it} - \delta_r^k \log r_{j(d)t} + \delta_a^k \log a_{j(d)t} - \mathsf{MC}^k(d, x_{it}) + \xi_{jt}$$

For any two agents of same type k, moving to a new location \tilde{d} is a renewal action: \implies Their future look the same and can cancel out continuation values

With a bit of algebra and some assumptions we get to the ECCP estimator

$$\ln\left(\frac{\mathbb{P}_{t}(d,x_{t})}{\mathbb{P}_{t}(d',x_{t})}\frac{\mathbb{P}_{t+1}(\tilde{d},x_{t+1})^{\beta}}{\mathbb{P}_{t+1}(\tilde{d},x_{t+1}')^{\beta}}\right) = u_{t}(d,x_{t}) - u_{t}(d',x_{t}) + \beta\left(u_{t+1}(\tilde{d},x_{t+1}) - u_{t+1}(\tilde{d},x_{t+1}')\right) + \eta_{t}(d,d',x_{t})$$

Intuition:

- After renewal action \tilde{d} , same future flows after t + 2
- Relative likelihood of *d* over *d'* only depends on differences in utility flows along those paths

Recall Euler Equation:

$$\ln\left(\frac{\mathbb{P}_{t}(d,x_{t})}{\mathbb{P}_{t}(d',x_{t})}\frac{\mathbb{P}_{t+1}(\tilde{d},x_{t+1})^{\beta}}{\mathbb{P}_{t+1}(\tilde{d},x_{t+1}')^{\beta}}\right) = u_{t}(d,x_{t}) - u_{t}(d',x_{t}) + \beta\left(u_{t+1}(\tilde{d},x_{t+1}) - u_{t+1}(\tilde{d},x_{t+1}')\right) + \eta_{t}(d,d',x_{t})$$

and utility flows

$$u_{t}^{k}(d, x_{it}) = \delta_{t}^{k} + \delta_{j(d)}^{k} + \delta_{\tau}^{k} \tau_{it} - \delta_{r}^{k} \log r_{j(d)t} + \delta_{a}^{k} \log a_{j(d)t} - \mathsf{MC}^{k}(d, x_{it}) + \xi_{jt}$$

Recall Euler Equation:

$$\ln\left(\frac{\mathbb{P}_{t}(d,x_{t})}{\mathbb{P}_{t}(d',x_{t})}\frac{\mathbb{P}_{t+1}(\tilde{d},x_{t+1})^{\beta}}{\mathbb{P}_{t+1}(\tilde{d},x_{t+1}')^{\beta}}\right) = u_{t}(d,x_{t}) - u_{t}(d',x_{t}) + \beta\left(u_{t+1}(\tilde{d},x_{t+1}) - u_{t+1}(\tilde{d},x_{t+1}')\right) + \eta_{t}(d,d',x_{t})$$

and utility flows

$$u_{t}^{k}(d, x_{it}) = \delta_{t}^{k} + \delta_{j(d)}^{k} + \delta_{\tau}^{k} \tau_{it} - \delta_{r}^{k} \log r_{j(d)t} + \delta_{a}^{k} \log a_{j(d)t} - \mathsf{MC}^{k}(d, x_{it}) + \xi_{jt}$$

Identification of endogenous variables:

- Three supply shifters motivated by policy
- Demolition of housing stock
- Three BFM/BLP instruments
Preference estimates: IV results

	Older Families	Singles	Younger Families		
Log Rent	-11.769***	-2.523**	-2.340**		
	(1.201)	(0.987)	(1.045)		
Log Tourism Offices	-1.193***	-0.449***	0.299**		
	(0.169)	(0.143)	(0.144)		
Log Restaurants	0.281	0.729***	-0.195		
	(0.284)	(0.251)	(0.242)		
Log Café Bars	-0.822***	-0.547***	-0.081		
	(0.092)	(0.079)	(0.082)		
Log Food Stores	-2.000***	-1.314***	-0.600**		
	(0.324)	(0.280)	(0.289)		
Log Nonfood Stores	0.700**	1.626***	1.429***		
	(0.341)	(0.299)	(0.296)		
Log Nurseries	1.763***	0.076	0.316**		
	(0.172)	(0.141)	(0.148)		
Location FE	\checkmark	\checkmark	\checkmark		
Time FE	\checkmark	\checkmark	\checkmark		
Neighborhood Controls	\checkmark	\checkmark	\checkmark		

Housing supply: Regression equation

Absentee landlords. Total supply of rental units in location *j* is $\mathcal{H}_j = \mathcal{H}_i^L + \mathcal{H}_i^S$.

If landlords have i.i.d. type I EV idiosyncratic shocks and solve:

$$\max_{h\in\{L,S\}}\left\{\alpha r_{jt}+\epsilon_L,\quad \alpha p_{jt}-c_{jt}+\epsilon_S\right\}$$

Use logit inversion

$$\ln s_{jt}^{L} - \ln s_{jt}^{S} = \alpha (r_{jt} - p_{jt}) + \underbrace{\lambda_{j} + \lambda_{t} + \nu_{jt}}_{c_{jt}},$$

where ν_{jt} are unobservables in the cost c_{jt} .

Instrument for price gap $(r_{jt} - p_{jt})$ using demand shifter:

• Proxy of worldwide Airbnb popularity P_t x Touristic establishments pre-Airbnb entry T_i^{2008}

Long-term (LT) relative to short-term (ST) housing supply elasticities

	Dependent variable: In (LT share) - In (ST share)									
	OLS	IV	OLS	IV	OLS	IV	OLS	IV		
LT price - ST price	0.144*	0.354***	0.140*	0.360***	0.096	0.341***	0.020	0.241		
	(0.081)	(0.104)	(0.083)	(0.112)	(0.084)	(0.089)	(0.106)	(0.495)		
Year FE			Х	Х			Х	Х		
Wijk FE					Х	Х	Х	Х		
First stage F-stat		69.22		23.94		14.72		15.82		
Observations	271	271	271	271	271	271	271	271		

Introduction

Amenities as a residual

Endogenous location characteristics

Unpacking the black-box of amenities: Almagro and Domínguez-lino (202?)

Data patterns in Amsterdam

Structural model and estimation

Counterfactuals

Final discussion

Equilibrium definition

A stationary equilibrium is,

- 1. a vector of prices $\mathbf{r} = (r_1, \ldots, r_J)$ and a matrix of amenities $\mathbf{a} = [a_1, \ldots, a_J]$,
- 2. policy functions $h(r_j; c_j, p_j, \epsilon_l)$ for landlords, $d^k(j_i, \tau_i, \mathbf{r}, \mathbf{a}; \epsilon_i)$ for each type k household
- 3. a stationary distribution of types over locations and tenure, $\pi^{k}(\mathbf{r}, \mathbf{a})$

such that,

- 1. each landlord and each household supply and demand housing optimally, respectively
- 2. prices r clear the long-term housing market in each location *j*,

 $\mathcal{H}_{j}^{L}(\mathbf{r}_{j};\mathbf{c}_{j},\mathbf{p}_{j})=\mathcal{D}_{j}^{L}(\mathbf{r},\mathbf{a})$

3. the demand of amenities a_j is equal to the supply of amenities A_j in each location

$$a_j = \mathcal{A}_j = \mathcal{A}(M_j^1, ..., M_j^K, M_j^T).$$

UEA Summer School 2023

Endogenous amenities and preference heterogeneity

Exogenous amenities

% Change in the equilibrium rent

Endogenous amenities

% Change in the equilibrium rent

Short-term rental entry: Changes in residents

(a) Baseline population distribution with endogenous amenities

(b) Change in population distribution after short-term rental entry

Short-term rental entry: Changes in amenities

Change in % Share of Touristic Amenities

Change in % Share of Food Stores

Change in % Share of Restaurants

Change in the % Share of Non-food Stores

Change in % Share of Bars

Change in % Share of Nurseries

Short-term rental entry: Welfare decomposition

Welfare effects on residents

Short-term rental entry: Welfare decomposition

Welfare effects on residents

Homeownership-adjusted welfare effects

Final discussion

Data Sources

Location choices across space

- PSID: Kennan and Walker (2011)...
- CoreLogic: Bayer, Ferreira and McMillan (2007)...
- Census: Diamond (2016)...

Local prices and retail

- Nielsen: Handbury & Weinstein, Handbury (2021), Diamond & Moretti (2022), Hoelzlein (2020)...
- NETS: Couture & Handbury (2021) and Hoelzlein (2020)....
- Yelp/Google: Couture (2016), Davis, Dingel, Monras, & Morales (2019)

Commuting surveys:

• Alhfeldt, Redding, Sturm, & Wolf (2017)...

Infutor:

• Diamond, McQuade, and Qian (2019)...

Credit card:

• Relihan (2022), Allen, Fuchs, Ganapati, Graziano, Madera, & Montoriol (2023), Diamond and Moretti (2023)...

Census microdata:

• Almagro and Domínguez-Iino (202?)...

Mobile phone location records:

• Miyauchi, Nakajima, and Redding (2022)...

Plenty of unanswered questions (totally subjective!)

Retail/consumption amenities:

- Vertical differentiation: quality
- Supply side: entry, competition
- Spillovers across types of retails: agglomeration forces, complementarities

Plenty of unanswered questions (totally subjective!)

Retail/consumption amenities:

- Vertical differentiation: quality
- Supply side: entry, competition
- Spillovers across types of retails: agglomeration forces, complementarities

Determinants of segregation and mobility frictions

- Discrimination
- Social Networks
- Constrained choice sets

Plenty of unanswered questions (totally subjective!)

Retail/consumption amenities:

- Vertical differentiation: quality
- Supply side: entry, competition
- Spillovers across types of retails: agglomeration forces, complementarities

Determinants of segregation and mobility frictions

- Discrimination
- Social Networks
- Constrained choice sets

The role of the government and politics

- Public good provision
- Political economy of housing regulation

Thanks and have fun!