Data-Driven Nests in Discrete Choice Models

Milena Almagro (Minneapolis Fed and Chicago Booth) and Elena Manresa (NYU)

May 4, 2021

Motivation

- Models of discrete choice are the workhorse in demand estimation with random utility
- Based on the random utility framework
 - Utility is driven by observable characteristics and an idiosyncratic taste shock
 - Agents choose the alternative with highest utility
- If idiosyncratic shocks are ~ Type I EV \implies Multinomial logit:
 - Closed form solutions of choice probability
 - Low number of parameters
 - Generates unrealistic substitution patterns

- A number of different models have been proposed to alleviate these "undesirable features"
- Random Coefficients (RC): Logit with heterogeneity in preferences across consumers
 - Flexible substitution patterns.
 - Computationally expensive: non-linear optimization, no closed-form demand.
 - Distributional assumptions on heterogeneity.
- Nested Logit (NL): Natural extension of Multinomial Logit
 - Closed form solutions, parsimony (linear IV regression), interpretability.
 - Less flexible substitution patterns.
 - Nests need to be specified ex-ante.

This Paper: Estimate Groups in Nested Logit

- Methodology to estimate the nest structure as well as preference parameters
- No assumption on the nest structure \implies recovered from the data
- Two-step estimation procedure:
 - Use k-means to estimate the nest structure
 - Stimate the utility parameters as if the groups where known
- Identification of the nests and statistical properties.
- Monte Carlo Simulations
- Empirical Application: US Automobile Sale Data.

- Discrete Choice Models: McFadden (1978), Cardell (1997), Kovach & Tserenjigmid (2020)
- Empirical Models with Nesting Structures: Goldberg (1995), Einav (2007), Grennan (2013), Ciliberto & Williams (2014), Conlon & Rao (2016), Miller & Weinberg (2017)
- Group Fixed Effect Estimator: Han & Moon (2010), Bonhomme & Manresa (2015), Phillips et al (...)
- Alternative Grouping Structure: Fosgerau, Monardo, & De Palma (2021), Hortacsu, Lieber, Monardo & de Paula (ongoing)

Consumer choice model

Consumer choice model: a recap

• Consider the following indirect utility model:

$$V_{ij} = \delta_j + \varepsilon_{ij}$$

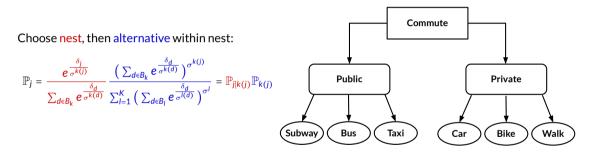
for agent *i* when choosing *j*.

• When ϵ_{ij} ~ Type I EV, choice probabilities are given by:

$$\mathbb{P}_j = \frac{\exp(\delta_j)}{\sum_{j'} \exp(\delta_{j'})}$$

• With K groups and $(\varepsilon_{i1}, ..., \varepsilon_{iJ})$ have cumulative distribution $\sim \exp\left(-\sum_{k=1}^{K} (\sum_{j \in B_K} e^{-\frac{\epsilon_j}{\sigma^{k(j)}}})^{\sigma^{k(j)}}\right)$:

$$\mathbb{P}_{j} = \frac{e^{\frac{\delta_{j}}{\sigma^{k(j)}}} \left(\sum_{d \in B_{k}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}}\right)^{\sigma^{k(j)}-1}}{\sum_{l=1}^{K} \left(\sum_{d \in B_{l(j)}} e^{\frac{\delta_{d}}{\sigma^{l(d)}}}\right)^{\sigma^{l}}}$$



Elasticities:

• For Logit:

$$\mathsf{E}^{\mathsf{q}}_{j} = -\mathbb{P}_{\mathsf{q}} rac{\partial \delta_{\mathsf{q}}}{\partial p_{\mathsf{q}}} p_{\mathsf{q}}$$

• For Nested Logit:

$$E_{j}^{q} = \begin{cases} -\mathbb{P}_{q} \frac{\partial \delta_{q}}{\partial p_{q}} p_{q} & \text{if } q \in B_{k'(q)} \neq B_{k(j)} \\ (\sigma^{k(j)} - 1) \mathbb{P}_{q|k(j)} \frac{\partial \delta_{q}}{\partial p_{q}} p_{q} - \mathbb{P}_{q} \frac{\partial \delta_{q}}{\partial p_{q}} p_{q} & \text{if } q \in B_{k(j)} \end{cases}$$

- \implies Elasticity Multinomial Logit \leq Elasticity Nested Logit (within nest).
- \implies Products within same nest closer substitutes than across nests.
- \implies More substitution as σ^k decreases.
- \implies $(1 \sigma^{k(j)}) \in [0, 1]$ can be interpreted as correlation within nest.

Identification

Identification of Groups (I)

Let

then

$$\mathsf{IV}^{k} \equiv \sum_{d \in B_{k}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}} \quad \text{and} \quad \mathsf{IV} \equiv \sum_{l=1}^{K} \left(\sum_{d \in B_{l}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}}\right)^{\sigma^{l}}$$

$$\mathbb{P}_{j} = \frac{e^{\frac{\delta_{j}}{\sigma^{k(j)}}} \left(\sum_{d \in B_{k}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}}\right)^{\sigma^{k(j)} - 1}}{\sum_{l=1}^{K} \left(\sum_{d \in B_{j}} e^{\frac{\delta_{d}}{\sigma^{l(d)}}}\right)^{\sigma^{l}}} = \frac{e^{\frac{\delta_{j}}{\sigma^{k(j)}}} \left(IV^{k(j)}\right)^{\sigma^{k(j)} - 1}}{IV}$$

Taking logs:

$$\log \mathbb{P}_j = \frac{\delta_j}{\sigma^{k(j)}} + (\sigma^{k(j)} - 1) \log |\mathsf{V}^{k(j)} - \log |\mathsf{V}|.$$

We assume $\delta_0 = 0$ and $k(0) = \{0\}$ as in Berry (1994). It follows:

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \frac{\delta_j}{\sigma^{k(j)}} + (\sigma^{k(j)} - 1) \log \mathsf{IV}^{k(j)}$$

Identification of Groups (II)

We now assume linear utility in one observable component:

 $\delta_j = \beta x_j$

Substituting inside choice probabilities

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \frac{\beta}{\sigma^{k(j)}} \mathbf{x}_j + (\sigma^{k(j)} - 1) \log \mathsf{IV}^{k(j)}$$

Denote

$$\beta^{k(j)} = \frac{\beta}{\sigma^{k(j)}}$$
 and $\lambda^{k(j)} = (\sigma^{k(j)} - 1) \log |\mathsf{V}^{k(j)}|$

We obtain the following equation:

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \beta^{k(j)} \mathbf{x}_j + \lambda^{k(j)}$$

 $\implies \beta^k$ and λ^k common to all products within the same nest!

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \beta^{k(j)} x_j + \lambda^{k(j)}$$

Intuition: Assume products *j* and *j'* have same *x*'s

If
$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$$
 is equal to $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$ and j' are in the same group.

• If $\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$ is different from $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$ and j' are **not** in the same group.

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \beta^{k(j)} x_j + \lambda^{k(j)}$$

Intuition: Assume products *j* and *j'* have same *x*'s

• If
$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$$
 is equal to $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$ and j' are in the same group.

If
$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$$
 is different from $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$ and j' are **not** in the same group.

Remarks:

- **(**) We think of $\beta^{k(j)}$ and $\lambda^{k(j)}$ as group-specific slope and intercept in a regression equation.
- Identification of the groups is hence obtained without fully imposing the structure of the model.

The first step not only recovers groups but also $\{\beta^1, \ldots, \beta^K, \lambda^1, \ldots, \lambda^K\}$.

Recall

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \frac{\delta_j}{\sigma^{k(j)}} + \lambda^{k(j)}, \qquad \lambda^k = (\sigma^k - 1) \log \mathsf{IV}_k = (\sigma^k - 1) \log \sum_{j \in B_k} e^{\frac{\delta_j}{\sigma^k}} \qquad \text{and} \qquad \beta^k = \frac{\beta}{\sigma^k}$$

Then, σ^k and β are jointly identified from the following equations:

$$\lambda^{k} = \frac{\sigma^{k} - 1}{\sigma^{k}} \log \left(\sum_{j \in B_{k}} \frac{\mathbb{P}_{j}}{\mathbb{P}_{0}} \right) \quad \text{ and } \quad \beta^{k} = \frac{\beta}{\sigma^{k}}$$

Estimation

In what follows, we assume that covariates x are exogenous but allow for endogeneity of prices p.

We consider two different models of indirect utility:

A panel data framework with product fixed effects:

$$\delta_{jm} = \beta_p p_{jm} + x_{jm} \beta_x + \xi_j + \nu_{jm},$$

where

$$\mathbb{E}[\nu_{jm}|p_{j1},\ldots,p_{jM},x_{j1},\ldots,x_{jM},\xi_j]=0$$

Panel data with exogenous shifters:

$$\delta_{jm} = \beta_p p_{jm} + x_{jm} \beta_x + \nu_{jm},$$

where there exists z_{jm} such that

$$\mathbb{E}[\nu_{jm}|x_{jm},z_{jm}]=0$$

Outline

Motivation

2 Consumer choice model

Identification

4 Estimation

- Case 1: Panel Data
- Case 2: Exogenous Shifters
- 5 Statistical Properties
- 6 Choosing the Number of Groups
- 7 Monte Carlo
- Application: US Automobile Data

Recall, indirect utility is defined as:

$$\delta_{jm} = \beta_p \boldsymbol{p}_{jm} + \boldsymbol{x}_{jm} \beta_{\mathsf{x}} + \xi_j + \nu_{jm},$$

where

$$\mathbb{E}[\nu_{jm}|p_{j1},\ldots,p_{jM},x_{j1},\ldots,x_{jM},\xi_j]=0$$

Therefore,

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{om}} = \frac{\beta_p p_{jm} + x_{jm} \beta_x + \xi_j + \nu_{jm}}{\sigma^{k(j)}} + \lambda^{k(j),m} = \beta_p^{k(j)} p_{jm} + x_{jm} \beta_x^{k(j)} + \tilde{\xi}_j + \tilde{\nu}_{jm} + \lambda_m^{k(j)},$$
where $\tilde{\xi}_j = \frac{\xi_j}{\sigma^{k(j)}}$ and $\tilde{\nu}_{jm} = \frac{\nu_{jm}}{\sigma^{k(j)}}$

We demean data to remove fixed effects $\tilde{\xi}_i$

$$\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} = \beta_p^{k(j)} \overline{p}_{jm} + \overline{x}_{jm} \beta_x^{k(j)} + \overline{\lambda}_m^{k(j)} + \overline{\nu}_{jm},$$

where \bar{y} indicates demeaned variables.

May 4, 2021

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

• Let $(\beta^{1,0},\ldots,\beta^{K,0},\lambda_1^{K,0},\ldots,\lambda_M^{K,0})$ be a starting value.

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

- Let $(\beta^{1,0}, \ldots, \beta^{K,0}, \lambda_1^{K,0}, \ldots, \lambda_M^{K,0})$ be a starting value.
- **2** For $(\beta^{1,s}, \ldots, \beta^{K,s}, \lambda_1^{K,s}, \ldots, \lambda_M^{K,s})$, compute for all $j \in J$:

$$k(j)^{s+1} = \underset{k \in \{1, \dots, K\}}{\operatorname{arg\,min}} \sum_{m=1}^{M} \left(\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\overline{\mathbf{x}}_{jm} \beta^{k,s} + \lambda_m^{k,s} \right) \right)^2,$$

to recover grouping structure \mathcal{B}^{s+1} .

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

- Let $(\beta^{1,0}, \ldots, \beta^{K,0}, \lambda_1^{K,0}, \ldots, \lambda_M^{K,0})$ be a starting value.
- **2** For $(\beta^{1,s}, \ldots, \beta^{K,s}, \lambda_1^{K,s}, \ldots, \lambda_M^{K,s})$, compute for all $j \in J$:

$$k(j)^{s+1} = \underset{k \in \{1, \dots, K\}}{\arg\min} \sum_{m=1}^{M} \left(\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\overline{\mathbf{x}}_{jm} \beta^{k,s} + \lambda_m^{k,s} \right) \right)^2,$$

to recover grouping structure \mathcal{B}^{s+1} .

Ompute:

$$(\beta^{1,s+1},\ldots,\beta^{K,s+1},\lambda_1^{K,s+1},\ldots,\lambda_M^{K,s+1}) = \underset{\beta^1,\ldots,\beta^K,\lambda_1^1,\ldots,\lambda_M^K}{\operatorname{arg\,min}} \sum_{j=1}^J \sum_{m=1}^M \left(\overline{\log\frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\bar{x}_{jm}\beta^{k(j),s+1} + \lambda_m^{k(j),s+1}\right)\right)^2$$

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

- Let $(\beta^{1,0}, \ldots, \beta^{K,0}, \lambda_1^{K,0}, \ldots, \lambda_M^{K,0})$ be a starting value.
- **2** For $(\beta^{1,s}, \ldots, \beta^{K,s}, \lambda_1^{K,s}, \ldots, \lambda_M^{K,s})$, compute for all $j \in J$:

$$k(j)^{s+1} = \underset{k \in \{1, \dots, K\}}{\arg\min} \sum_{m=1}^{M} \left(\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\overline{\mathbf{x}}_{jm} \beta^{k,s} + \lambda_m^{k,s} \right) \right)^2,$$

to recover grouping structure \mathcal{B}^{s+1} .

Compute:

$$(\beta^{1,s+1},\ldots,\beta^{K,s+1},\lambda_1^{K,s+1},\ldots,\lambda_M^{K,s+1}) = \underset{\beta^1,\ldots,\beta^K,\lambda_1^1,\ldots,\lambda_M^K}{\operatorname{arg\,min}} \sum_{j=1}^J \sum_{m=1}^M \left(\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\bar{x}_{jm}\beta^{k(j),s+1} + \lambda_m^{k(j),s+1}\right)\right)^2$$

Repeat until convergence of parameters.

Second Step: Linear Regression

Based on the estimated classification from the first step, we follow Berry (1994).

Under normalization $\delta_0 = 0$ and $k(0) = \{0\}$

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_0} = \delta_{jm} + (1 - \sigma^{k(j)}) \log \mathbb{P}_{jm|k(j)} + \nu_{jm}$$

Substituting the expression for δ_i :

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \beta_p p_{jm} + x_{jm}\beta + (1 - \sigma^{k(j)}) \log \mathbb{P}_{jm|k(j)} + \nu_{jm}$$

Linear regression equation on x_{jm} and $\log \mathbb{P}_{jm|k(j)}$:

• Construct $\mathbb{P}_{j|k(j)}$ based on estimated groups from first step $\{\hat{B}_k\}_{k=1}^{K}$:

$$\hat{\mathbb{P}}_{jm|k} = \frac{\mathbb{P}_{jm}}{\sum_{j \in \hat{B}_k} \mathbb{P}_j}$$

Simultaneity problem: → Instrument P̂_{jm|k(j)} using second order moments of exogenous x_{jm}.

Outline

Motivation

2 Consumer choice model

Identification

4 Estimation

- Case 1: Panel Data
- Case 2: Exogenous Shifters
- 5 Statistical Properties
- 6 Choosing the Number of Groups
- Monte Carlo
- Application: US Automobile Data

Assume indirect utility model is described as:

$$\delta_{jm} = \beta_p p_{jm} + x_{jm} \beta_x + \nu_{jm}$$

If $\mathbb{E}[\nu_{jm}p_{jm}] \neq 0$, the algorithm outlined before does not consistently recover the groups.

To overcome this issue, we use a Control Function Approach defined in Petrin and Train (2010).

We require the existence of z_{jm} such that

 $\mathbb{E}[\nu_{jm}|x_{jm},z_{jm}]=0.$

Control Function Approach

Concretely, there is an unobservable confounder μ_{jm} such that:

$$p_{jm} = f(x_{jm}, z_{jm}, \mu_{jm})$$
 and $\nu_{jm} = g(\mu_{jm}, \varepsilon_{jm}),$

for which we assume that

$$p_{jm} \perp \nu_{jm} |\mu_{jm}|$$

For simplicity we also assume:

$$p_{jm} = f(x_{jm}, z_{jm}; \gamma) + \mu_{jm}$$
 and $\nu_{jm} = CF(\mu_{jm}) + \varepsilon_{jm}$

Include $CF(\mu_{jm})$ as part of indirect utility :

$$\begin{aligned} \delta_{jm} &= \beta_p p_{jm} + x_{jj} \beta_x + \nu_{jm} \\ &= \beta_p p_{jm} + x_{jm} \beta_x + \mathsf{CF}(\mu_{jm}) + \varepsilon_{jm}, \end{aligned}$$

with $\mathbb{E}[\varepsilon_{jm}|p_{jm}, x_{jm}, \mu_{jm}] = 0.$

Substituting δ_{jm} inside choice probabilities:

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \beta_p^{k(j)} p_{jm} + x_j \beta_x^{k(j)} + \widetilde{CF}(\mu_{jm}) + \widetilde{\lambda}_m^{k(j)} + \widetilde{\varepsilon}_{jm},$$

which is a known expression with p_{jm}, x_{jm} and μ_{jm} as observable covariates.

This expression motivates the following steps:

O Project p_{jm} on exogenous variables (z_{jm}, x_{jm}) to estimate μ_{jm}

$$\hat{\mu}_{jm} = p_{jm} - \hat{f}(x_{jm}, z_{jm})$$

- 2 Include $\hat{\mu}_{jm}$ in our classification algorithm as a control for the confounder between ν_{jm} and p_{jm} .
- Sollow step 2 as if the groups are known.

Statistical Properties

• Let us consider the following simplified model:

$$\log \mathbb{P}_{jm} - \log \mathbb{P}_{0m} = \beta_p^{k(j)} p_{jm} + x_{jm} \beta_x^{k(j)} + \lambda_m^{k(j)} + \nu_{jm}$$

with $\mathbb{E}[\nu_{jm}|p_{j1},\ldots,p_{jM},x_{j1},\ldots,x_{jM},\lambda_1^1,\ldots\lambda_M^K] = 0.$

- Build upon results in Bonhomme and Manresa (2015).
- Work in progress: allow for product fixed effects and projection of prices.

• Group separation. For simplicity, assume simplest model:

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \lambda^{k(j)} + \nu_{jm}, \quad \text{ with } k \in \{1, 2\}, \ \lambda^2 > \lambda^1, \ \nu_{jm} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$$

It follows

$$\mathbb{P}(\hat{k}(j)=2|k(j)=1)=\mathbb{P}\Big(\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{2})^{2}<\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{1})^{2}\Big)=\mathbb{P}(\bar{\nu}_{j}>\lambda^{2}-\lambda^{1})=1-\Phi\Big(\sqrt{M}\big(\frac{\lambda^{2}-\lambda^{1}}{2}\big)\Big)$$

• Group separation. For simplicity, assume simplest model:

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \lambda^{k(j)} + \nu_{jm}, \quad \text{ with } k \in \{1, 2\}, \ \lambda^2 > \lambda^1, \ \nu_{jm} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$$

It follows

$$\mathbb{P}(\hat{k}(j)=2|k(j)=1)=\mathbb{P}\Big(\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{2})^{2}<\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{1})^{2}\Big)=\mathbb{P}(\bar{\nu}_{j}>\lambda^{2}-\lambda^{1})=1-\Phi\Big(\sqrt{M}\Big(\frac{\lambda^{2}-\lambda^{1}}{2}\Big)\Big)$$

- Rank condition: Variation in x at the intersection of any group with true groups
- Exponential tails and limited market dependence on the error term

• It can be shown:

$$\mathbb{P}(\sup_{j\in\{1,2,\ldots,J\}}|\widehat{k}(j)-k(j)|>0)=o(1)+o(JM^{-\delta})$$

for any $\delta > 0$, as J and M go to infinity.

- Both J and M grow to infinity, but M can grow at a much lower rate!
- "Super consistency" of group estimation \implies standard inference in the second step.

Choosing the Number of Groups

Choosing K: Cross-Validation with Elbow Method

So far we have assumed the number of groups is known.

In practice, we can also estimate the number of groups using a N-fold cross-validation procedure.

For all $k \in \mathcal{K}$:

- Divide products into *n* equal parts, *P*₁, ..., *P*_N.
- Fix one part P_n and estimate grouping structure and grouping parameters in the other N 1 parts.
- Classify products across estimated groups in part P_n and compute out-of-sample MSE

$$MSE_n(k) = \frac{1}{J \cdot M} \sum_{m=1}^{M} \sum_{j \in P_n} (y_j - \beta_{m,-n}^{k(j)} x_j - \lambda_{m,-n}^{k(j)})^2$$

• Take average across *N* folds:

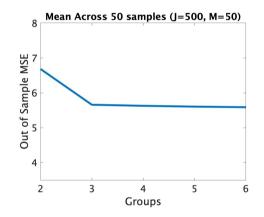
$$MSE(k) = \frac{1}{N} \sum_{n=1}^{N} MSE_n(k)$$

• Choose *k* according to

 $k^* = \{k(j) | where slope of MSE(k) changes \}$

Cross Validation: Simulation Results

groups = 3, # folds = 5, # MC samples = 50



Moving M

Monte Carlo

- Indirect utility δ_{jm} is given by

$$\delta_{jm} = \beta_p p_{jm} + \beta_1 x_{jm,1} + \beta_2 x_{jm,2} + \xi_j + \nu_{jm},$$

where $p_{jm,1}$ are prices and $(x_{jm,1}, x_{jm,2})$ are exogenous covariates. We set:

• $p_{jm,1} = \tilde{p}_{jm} + \xi_{j,p}$, with: • $\tilde{p}_{jm,1} \stackrel{i.i.d.}{\sim} \mathcal{N}(k(j) \cdot \arctan(m+1), 1)$ • $\begin{bmatrix} \xi_{j,p} \\ \xi_{j} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix})$ • $x_{jm,1}, x_{jm,2} \stackrel{i.i.d.}{\sim} \mathcal{N}(k(j) \cdot (-1)^{k(j)} \cdot \arctan(m+1), 1)$ • $\mathbb{E}[\nu_{jm}|p_{j1}, x_{j1,1}, x_{j1,2}, \dots, p_{jM}, x_{jM,1}, x_{jM,2}, \xi_{j}] = 0$ with $\nu_{jm} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$ • $\beta_{p} = -1$ and $\beta_{1} = \beta_{2} = 1$

- Number of groups *K* = 3 with σ_1 = 0.3, σ_2 = 0.5, σ_3 = 0.7.

We leverage the closed form solution of Nested Logit models.

Construct IV_m^k as follows:

$$V_{k,m} = \Big(\sum_{d \in B_k} e^{\frac{\delta_{dm}}{\sigma^k}}\Big)$$

Finally, log probabilities are given by:

$$\log \mathbb{P}_{jm} - \log \mathbb{P}_{0m} = \frac{1}{\sigma^{k(j)}} \delta_{jm} + (\sigma^{k(j)} - 1) \log IV_m^{k(j)}$$

Results: K = 3, I = 1000, B = 500

					β_p	β_1	β_2	σ_1	σ_2	σ_3			
М	J	% Matches	Time (s)	True	-1	1	1	0.3	0.5	0.7			
10	100	0.911	2	Mean β	-0.898	0.896	0.894	0.254	0.425	0.627			
10	100	0.711	2	Std β	0.122	0.131	0.131	0.065	0.063	0.063			
50	100	1.000	13	Mean β	-0.956	0.957	0.958	0.286	0.476	0.669			
50	100	1.000	15	Std β	0.058	0.059	0.059	0.030	0.031	0.030			
100	100	1.000	66	Mean β	-0.971	0.970	0.971	0.291	0.485	0.679			
100	100	1.000	00	Std β	0.046	0.046	0.046	0.024	0.024	0.024			
10	500	0.070	0.070	0.070	0.070	14	Mean β	-0.912	0.904	0.903	0.264	0.429	0.629
10	500 0.879	14	Std β	0.078	0.080	0.080	0.038	0.037	0.039				
50	500 0.00/	.996 273	Mean β	-0.959	0.959	0.958	0.287	0.478	0.671				
50	500	0.996	273	Std β	0.047	0.047	0.047	0.024	0.024	0.024			
100	500	1.000	710	Mean β	-0.967	0.967	0.967	0.290	0.483	0.677			
100	500	1.000		Std β	0.044	0.044	0.044	0.023	0.023	0.022			
10	1000	0.070	25	Mean β	-0.903	0.898	0.897	0.267	0.427	0.625			
10	1000	0.870	25	Std β	0.054	0.056	0.056	0.026	0.027	0.026			
50	50 1000 0.988	0.988	471	Mean β	-0.963	0.963	0.963	0.289	0.478	0.673			
50	1000	0.700	58 4/1	Mean std	0.0381	0.0382	0.0381	0.0190	0.0192	0.0192			
100	1000	1.000	2145	Mean β	-0.976	0.976	0.975	0.292	0.487	0.683			
100	1000	1.000	2145	Std β	0.047	0.047	0.047	0.014	0.024	0.033			

Application: US Automobile Data

We use US Automobile data from BLP (1995).¹

Information on (essentially) all models marketed between 1971 and 1990.

Models both enter and exit over this period \implies unbalanced panel.

Total sample size is 2217 model/years representing 557 distinct models.

We set different years as different markets.

¹We use data from the R-package hdm developed by Chernozhukov, Hansen & Spindler (2019)

Description of product characteristics:

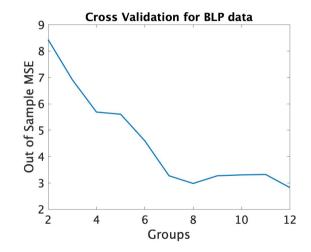
- *log share*: log of market shares
- price: deflated price to 1983 dollars using CPI
- mpd: miles per dollar
- air: air conditioning
- *mpg*: miles per gallon rating
- space:size (measured as length times width)
- hpwt: the ratio of horsepower to weight (in HP per 10 lbs)

- We consider an unbalanced panel of cars with:
 - At least five years of data.
 - At least three consecutive years.
- We are left with 82 products.
- We adapt our classification algorithm to allow for "missing data":
 - \implies Products can enter and exit over time.
 - \implies Group of products can also enter and exit over time!

Statistics of subsample of cars (N=82)

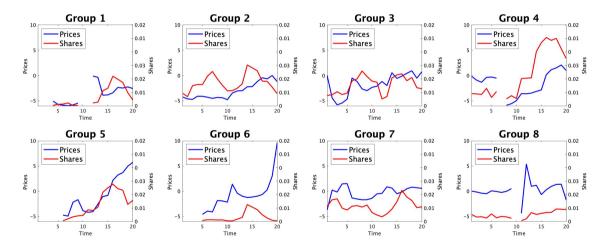
	Mean	Std. Dev.	Median	Min	Max	t-stat
Price	147	7.911	-2.532	-6.601	43.351	-1.06
Miles per Dollar	2.349	.513	2.376	1.352	3.805	2.78
AC	.299	.409	0	0	1	0.49
Miles per Gallon	2.214	.46	2.195	1.38	3.42	1.45
Space	1.266	.187	1.223	.951	1.711	0.13
Horse Power	.407	.069	.386	.308	.727	-0.23
Market Share	.001	.001	.001	0	.004	0.00
Yearly Observations	9.085	4.264	7	5	20	10.42
Year Entry	1980	5.261	1983	1971	1986	-4.62
Year Exit	1989	.88	1990	1988	1990	20.41

BLP Application: Choosing the number of groups



I	Mean	Std.	1	2	3	4	5	6	7	8
Shares	0.001	0.001	0.004	0.009	0.008	0.012	0.006	0.002	0.006	0.002
Price	-0.741	6.898	-3.679	-3.077	-1.694	-1.621	-0.688	-0.610	-0.292	0.211
Log HP	-0.940	0.183	-1.054	-0.973	-0.984	-0.976	-0.942	-0.876	-0.953	-0.915
Log Miles per \$	0.767	0.320	0.919	0.623	0.653	0.650	0.823	0.641	0.610	0.642
AC	0.277	0.448	0.072	0.315	0.259	0.268	0.132	0.144	0.303	0.267
Log Space	0.239	0.164	0.096	0.315	0.259	0.282	0.176	0.180	0.303	0.281
Туре			Subc.	Compact	Mid-size	Luxury	Mid-size	Sport	Mid-size	Full-size
of car		I	1	Mid-size	Luxury		Luxury		Full-size	Luxury
# Products	82	2	7	11	11	15	12	8	12	6

BLP Application: Evolution of Shares



BLP Application: Second-step Results

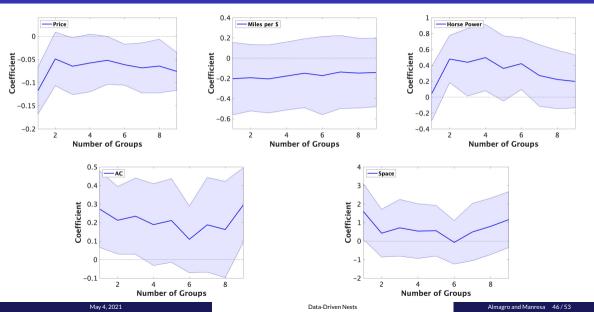
Estimates Preference Parameters

	β	$\sigma_{\hat{eta}}$
Price	-0.064***	(0.029)
Horse Power	-0.148	(0.176)
Miles per \$	0.222	(0.187)
AC	0.1621	(0.133)
Space	0.791	(0.775)

Estimates Within-Nest Correlation

	Group										
	1	1 2 3 4 5 6 7 8									
$\hat{\sigma}$	0.868***	0.596***	0.472***	0.827***	0.722***	0.836***	0.528***	0.572***			
$\sigma_{\hat{\sigma}}$	(0.155)	(0.277)	(0.165)	(0.104)	(0.273)	(0.139)	(0.145)	(0.173)			
F 1st stage	50.673	2.7697	6.241	6.320	6.963	16.311	11.805	11.748			

Moving K: Preference Parameters



# Groups	σ_1	σ_2	σ_3	σ_4	σ_5	σ_6	σ_7	σ_8	σ_9
2	0.525	0.372							
3	0.619	0.614	0.590						
4	0.693	0.660	0.499	0.459					
5	0.816	0.681	0.573	0.547	0.362				
6	0.807	0.759	0.601	0.355	0.237	0.213			
7	1.235	0.850	0.837	0.704	0.659	0.526	0.330		
8	0.868	0.836	0.827	0.722	0.596	0.572	0.528	0.472	
9	0.965	0.758	0.729	0.676	0.644	0.535	0.528	0.439	-0.160

Notes: Bold = different from 0 at the 95%, Italic = different from 1 at the 95%.

• Method that simultaneously estimates nests and preference parameters in nested logit models.

- Method that simultaneously estimates nests and preference parameters in nested logit models.
- Two models to overcome endogeneity of prices:
 - Panel with product fixed effects that are correlated with prices
 - Panel with exogenous shifters onto which project prices

- Method that simultaneously estimates nests and preference parameters in nested logit models.
- Two models to overcome endogeneity of prices:
 - Panel with product fixed effects that are correlated with prices
 - Panel with exogenous shifters onto which project prices
- Monte Carlo simulations:
 - $\bullet~\sim$ 90% match rate with only 10 and \sim 100% with 100 markets.
 - Biases in preference parameters decrease as number of market increases.

- Method that simultaneously estimates nests and preference parameters in nested logit models.
- Two models to overcome endogeneity of prices:
 - Panel with product fixed effects that are correlated with prices
 - Panel with exogenous shifters onto which project prices
- Monte Carlo simulations:
 - $\bullet~\sim$ 90% match rate with only 10 and \sim 100% with 100 markets.
 - Biases in preference parameters decrease as number of market increases.
- BLP application:
 - Eight groups with separation in prices, car characteristics, and market trends.
 - Wide range of substitution patterns, from very independent to highly correlated.

A traveler has a choice of commuting by **car** or taking a **blue bus**

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

A traveler has a choice of commuting by **car** or taking a **blue bus**

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

Now a **red bus** is introduced, exactly equal to blue bus (but the color) $\implies \frac{\mathbb{P}_{rb}}{\mathbb{P}_{bb}} = 1$

Given IIA, $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}} = 1$. The only consistent model with both is

$$\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$$

A traveler has a choice of commuting by **car** or taking a **blue bus**

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

Now a **red bus** is introduced, exactly equal to blue bus (but the color) $\implies \frac{\mathbb{P}_{rb}}{\mathbb{P}_{bb}} = 1$

Given IIA, $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}} = 1$. The only consistent model with both is

$$\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$$

Is $\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$ realistic?

A traveler has a choice of commuting by **car** or taking a **blue bus**

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

Now a **red bus** is introduced, exactly equal to blue bus (but the color) $\implies \frac{\mathbb{P}_{rb}}{\mathbb{P}_{bb}} = 1$

Given IIA, $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}} = 1$. The only consistent model with both is

$$\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$$

Is $\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$ realistic? Not really. If blue and red only differ in color, we should expect

$$\mathbb{P}_c = \frac{1}{2} \qquad \qquad \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{4}$$

The ratio $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}}$ should actually change with the introduction of the red bus!

May 4, 2021

Cross Validation: Results

groups = 3, # products = 100, # folds = 5

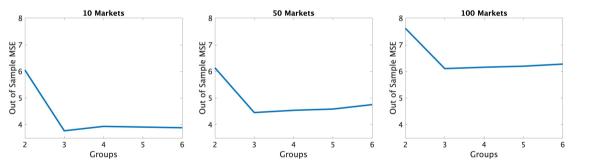
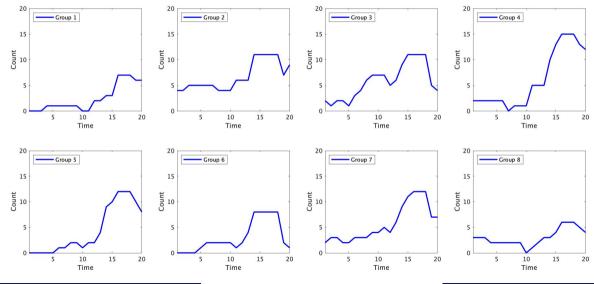


Table: Average characteristics of all cars, (N = 557)

	Mean	Std. Dev.	Median	Min	Max	t-stat
Price	.862	8.983	-2.516	-8.368	43.351	1.06
Miles per Dollar	2.175	.641	2.094	1.055	6.437	-2.78
AC	.275	.424	0	0	1	-0.49
Miles per gallon	2.133	.552	2.07	1	5.3	-1.45
Space	1.263	.216	1.223	.79	1.888	-0.13
Horse Power	.409	.098	.385	.207	.888	0.23
Market Share	.001	.001	0	0	0.006	0.00
Yearly Observations	3.899	3.857	2	1	20	-10.42
Entry Year	1980	6.511	1981	1971	1990	4.62
Exit Year	1984	6.101	1986	1971	1990	-20.41

BLP Application: Evolution of Size

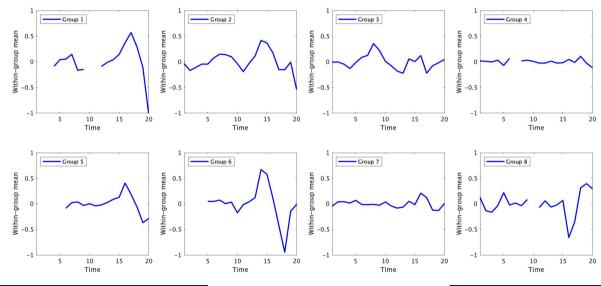


May 4, 2021

Data-Driven Nests

Almagro and Manresa 52/53

BLP Application: First Step Group Fixed Effects



May 4, 2021

Data-Driven Nests

Almagro and Manresa 53/53