#### Data-Driven Nests in Discrete Choice Models

Milena Almagro (Minneapolis Fed and Chicago Booth) and Elena Manresa (NYU)

May 4, 2021

### Motivation

- Models of discrete choice are the workhorse in demand estimation with random utility
- Based on the random utility framework
  - Utility is driven by observable characteristics and an idiosyncratic taste shock
  - Agents choose the alternative with highest utility
- If idiosyncratic shocks are ~ Type I EV  $\implies$  Multinomial logit:
  - Closed form solutions of choice probability
  - Low number of parameters
  - Generates unrealistic substitution patterns

- A number of different models have been proposed to alleviate these "undesirable features"
- Random Coefficients (RC): Logit with heterogeneity in preferences across consumers
  - Flexible substitution patterns.
  - Computationally expensive: non-linear optimization, no closed-form demand.
  - Distributional assumptions on heterogeneity.
- Nested Logit (NL): Natural extension of Multinomial Logit
  - Closed form solutions, parsimony (linear IV regression), interpretability.
  - Less flexible substitution patterns.
  - Nests need to be specified ex-ante.

## This Paper: Estimate Groups in Nested Logit

- Methodology to estimate the nest structure as well as preference parameters
- No assumption on the nest structure  $\implies$  recovered from the data
- Two-step estimation procedure:
  - Use k-means to estimate the nest structure
  - Stimate the utility parameters as if the groups where known
- Identification of the nests and statistical properties.
- Monte Carlo Simulations
- Empirical Application: US Automobile Sale Data.

- Discrete Choice Models: McFadden (1978), Cardell (1997), Kovach & Tserenjigmid (2020)
- Empirical Models with Nesting Structures: Goldberg (1995), Einav (2007), Grennan (2013), Ciliberto & Williams (2014), Conlon & Rao (2016), Miller & Weinberg (2017)
- Group Fixed Effect Estimator: Han & Moon (2010), Bonhomme & Manresa (2015), Phillips et al (...)
- Alternative Grouping Structure: Fosgerau, Monardo, & De Palma (2021), Hortacsu, Lieber, Monardo & de Paula (ongoing)

#### Consumer choice model

### Consumer choice model: a recap

• Consider the following indirect utility model:

$$V_{ij} = \delta_j + \varepsilon_{ij}$$

for agent *i* when choosing *j*.

• When  $\epsilon_{ij}$  ~ Type I EV, choice probabilities are given by:

$$\mathbb{P}_j = \frac{\exp(\delta_j)}{\sum_{j'} \exp(\delta_{j'})}$$

• With K groups and  $(\varepsilon_{i1}, ..., \varepsilon_{iJ})$  have cumulative distribution  $\sim \exp\left(-\sum_{k=1}^{K} (\sum_{j \in B_K} e^{-\frac{\epsilon_j}{\sigma^{k(j)}}})^{\sigma^{k(j)}}\right)$ :

$$\mathbb{P}_{j} = \frac{e^{\frac{\delta_{j}}{\sigma^{k(j)}}} \left(\sum_{d \in B_{k}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}}\right)^{\sigma^{k(j)}-1}}{\sum_{l=1}^{K} \left(\sum_{d \in B_{l(j)}} e^{\frac{\delta_{d}}{\sigma^{l(d)}}}\right)^{\sigma^{l}}}$$



Elasticities:

• For Logit:

$$\mathsf{E}^{\mathsf{q}}_{j} = -\mathbb{P}_{\mathsf{q}} rac{\partial \delta_{\mathsf{q}}}{\partial p_{\mathsf{q}}} p_{\mathsf{q}}$$

• For Nested Logit:

$$E_{j}^{q} = \begin{cases} -\mathbb{P}_{q} \frac{\partial \delta_{q}}{\partial p_{q}} p_{q} & \text{if } q \in B_{k'(q)} \neq B_{k(j)} \\ (\sigma^{k(j)} - 1) \mathbb{P}_{q|k(j)} \frac{\partial \delta_{q}}{\partial p_{q}} p_{q} - \mathbb{P}_{q} \frac{\partial \delta_{q}}{\partial p_{q}} p_{q} & \text{if } q \in B_{k(j)} \end{cases}$$

- $\implies$  Elasticity Multinomial Logit  $\leq$  Elasticity Nested Logit (within nest).
- $\implies$  Products within same nest closer substitutes than across nests.
- $\implies$  More substitution as  $\sigma^k$  decreases.
- $\implies$   $(1 \sigma^{k(j)}) \in [0, 1]$  can be interpreted as correlation within nest.



#### Identification

# Identification of Groups (I)

Let

then

$$\mathsf{IV}^{k} \equiv \sum_{d \in B_{k}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}} \quad \text{and} \quad \mathsf{IV} \equiv \sum_{l=1}^{K} \left(\sum_{d \in B_{l}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}}\right)^{\sigma^{l}}$$

$$\mathbb{P}_{j} = \frac{e^{\frac{\delta_{j}}{\sigma^{k(j)}}} \left(\sum_{d \in B_{k}} e^{\frac{\delta_{d}}{\sigma^{k(d)}}}\right)^{\sigma^{k(j)} - 1}}{\sum_{l=1}^{K} \left(\sum_{d \in B_{j}} e^{\frac{\delta_{d}}{\sigma^{l(d)}}}\right)^{\sigma^{l}}} = \frac{e^{\frac{\delta_{j}}{\sigma^{k(j)}}} \left(IV^{k(j)}\right)^{\sigma^{k(j)} - 1}}{IV}$$

Taking logs:

$$\log \mathbb{P}_j = \frac{\delta_j}{\sigma^{k(j)}} + (\sigma^{k(j)} - 1) \log |\mathsf{V}^{k(j)} - \log |\mathsf{V}|.$$

We assume  $\delta_0 = 0$  and  $k(0) = \{0\}$  as in Berry (1994). It follows:

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \frac{\delta_j}{\sigma^{k(j)}} + (\sigma^{k(j)} - 1) \log \mathsf{IV}^{k(j)}$$

# Identification of Groups (II)

We now assume linear utility in one observable component:

 $\delta_j = \beta x_j$ 

Substituting inside choice probabilities

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \frac{\beta}{\sigma^{k(j)}} \mathbf{x}_j + (\sigma^{k(j)} - 1) \log \mathsf{IV}^{k(j)}$$

Denote

$$\beta^{k(j)} = \frac{\beta}{\sigma^{k(j)}}$$
 and  $\lambda^{k(j)} = (\sigma^{k(j)} - 1) \log |\mathsf{V}^{k(j)}|$ 

We obtain the following equation:

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \beta^{k(j)} \mathbf{x}_j + \lambda^{k(j)}$$

 $\implies \beta^k$  and  $\lambda^k$  common to all products within the same nest!

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \beta^{k(j)} x_j + \lambda^{k(j)}$$

Intuition: Assume products *j* and *j'* have same *x*'s

If 
$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$$
 is equal to  $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$  and j' are in the same group.

• If  $\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$  is different from  $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$  and j' are **not** in the same group.

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \beta^{k(j)} x_j + \lambda^{k(j)}$$

Intuition: Assume products *j* and *j'* have same *x*'s

• If 
$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$$
 is equal to  $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$  and  $j'$  are in the same group.

If 
$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0}$$
 is different from  $\log \frac{\mathbb{P}'_j}{\mathbb{P}_0} \implies j$  and j' are **not** in the same group.

Remarks:

- **(**) We think of  $\beta^{k(j)}$  and  $\lambda^{k(j)}$  as group-specific slope and intercept in a regression equation.
- Identification of the groups is hence obtained without fully imposing the structure of the model.

The first step not only recovers groups but also  $\{\beta^1, \ldots, \beta^K, \lambda^1, \ldots, \lambda^K\}$ .

Recall

$$\log \frac{\mathbb{P}_j}{\mathbb{P}_0} = \frac{\delta_j}{\sigma^{k(j)}} + \lambda^{k(j)}, \qquad \lambda^k = (\sigma^k - 1) \log \mathsf{IV}_k = (\sigma^k - 1) \log \sum_{j \in B_k} e^{\frac{\delta_j}{\sigma^k}} \qquad \text{and} \qquad \beta^k = \frac{\beta}{\sigma^k}$$

Then,  $\sigma^k$  and  $\beta$  are jointly identified from the following equations:

$$\lambda^{k} = \frac{\sigma^{k} - 1}{\sigma^{k}} \log \left( \sum_{j \in B_{k}} \frac{\mathbb{P}_{j}}{\mathbb{P}_{0}} \right) \quad \text{ and } \quad \beta^{k} = \frac{\beta}{\sigma^{k}}$$

#### Estimation

In what follows, we assume that covariates x are exogenous but allow for endogeneity of prices p.

We consider two different models of indirect utility:

A panel data framework with product fixed effects:

$$\delta_{jm} = \beta_p p_{jm} + x_{jm} \beta_x + \xi_j + \nu_{jm},$$

where

$$\mathbb{E}[\nu_{jm}|p_{j1},\ldots,p_{jM},x_{j1},\ldots,x_{jM},\xi_j]=0$$

Panel data with exogenous shifters:

$$\delta_{jm} = \beta_p p_{jm} + x_{jm} \beta_x + \nu_{jm},$$

where there exists  $z_{jm}$  such that

$$\mathbb{E}[\nu_{jm}|x_{jm},z_{jm}]=0$$

# Outline

#### Motivation

2 Consumer choice model

#### Identification

#### 4 Estimation

- Case 1: Panel Data
- Case 2: Exogenous Shifters
- 5 Statistical Properties
- 6 Choosing the Number of Groups
- 7 Monte Carlo
- Application: US Automobile Data

Recall, indirect utility is defined as:

$$\delta_{jm} = \beta_p \boldsymbol{p}_{jm} + \boldsymbol{x}_{jm} \beta_{\mathsf{x}} + \xi_j + \nu_{jm},$$

where

$$\mathbb{E}[\nu_{jm}|p_{j1},\ldots,p_{jM},x_{j1},\ldots,x_{jM},\xi_j]=0$$

Therefore,

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{om}} = \frac{\beta_p p_{jm} + x_{jm} \beta_x + \xi_j + \nu_{jm}}{\sigma^{k(j)}} + \lambda^{k(j),m} = \beta_p^{k(j)} p_{jm} + x_{jm} \beta_x^{k(j)} + \tilde{\xi}_j + \tilde{\nu}_{jm} + \lambda_m^{k(j)},$$
where  $\tilde{\xi}_j = \frac{\xi_j}{\sigma^{k(j)}}$  and  $\tilde{\nu}_{jm} = \frac{\nu_{jm}}{\sigma^{k(j)}}$ 

We demean data to remove fixed effects  $\tilde{\xi}_i$ 

$$\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} = \beta_p^{k(j)} \overline{p}_{jm} + \overline{x}_{jm} \beta_x^{k(j)} + \overline{\lambda}_m^{k(j)} + \overline{\nu}_{jm},$$

where  $\bar{y}$  indicates demeaned variables.

May 4, 2021

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

• Let  $(\beta^{1,0},\ldots,\beta^{K,0},\lambda_1^{K,0},\ldots,\lambda_M^{K,0})$  be a starting value.

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

- Let  $(\beta^{1,0}, \ldots, \beta^{K,0}, \lambda_1^{K,0}, \ldots, \lambda_M^{K,0})$  be a starting value.
- **2** For  $(\beta^{1,s}, \ldots, \beta^{K,s}, \lambda_1^{K,s}, \ldots, \lambda_M^{K,s})$ , compute for all  $j \in J$ :

$$k(j)^{s+1} = \underset{k \in \{1, \dots, K\}}{\operatorname{arg\,min}} \sum_{m=1}^{M} \left( \overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left( \overline{\mathbf{x}}_{jm} \beta^{k,s} + \lambda_m^{k,s} \right) \right)^2,$$

to recover grouping structure  $\mathcal{B}^{s+1}$ .

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

- Let  $(\beta^{1,0}, \ldots, \beta^{K,0}, \lambda_1^{K,0}, \ldots, \lambda_M^{K,0})$  be a starting value.
- **2** For  $(\beta^{1,s}, \ldots, \beta^{K,s}, \lambda_1^{K,s}, \ldots, \lambda_M^{K,s})$ , compute for all  $j \in J$ :

$$k(j)^{s+1} = \underset{k \in \{1, \dots, K\}}{\arg\min} \sum_{m=1}^{M} \left( \overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left( \overline{\mathbf{x}}_{jm} \beta^{k,s} + \lambda_m^{k,s} \right) \right)^2,$$

to recover grouping structure  $\mathcal{B}^{s+1}$ .

Ompute:

$$(\beta^{1,s+1},\ldots,\beta^{K,s+1},\lambda_1^{K,s+1},\ldots,\lambda_M^{K,s+1}) = \underset{\beta^1,\ldots,\beta^K,\lambda_1^1,\ldots,\lambda_M^K}{\operatorname{arg\,min}} \sum_{j=1}^J \sum_{m=1}^M \left(\overline{\log\frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\bar{x}_{jm}\beta^{k(j),s+1} + \lambda_m^{k(j),s+1}\right)\right)^2$$

We propose the following classification algorithm based on Bonhomme and Manresa (2015):

- Let  $(\beta^{1,0}, \ldots, \beta^{K,0}, \lambda_1^{K,0}, \ldots, \lambda_M^{K,0})$  be a starting value.
- **2** For  $(\beta^{1,s}, \ldots, \beta^{K,s}, \lambda_1^{K,s}, \ldots, \lambda_M^{K,s})$ , compute for all  $j \in J$ :

$$k(j)^{s+1} = \underset{k \in \{1, \dots, K\}}{\arg\min} \sum_{m=1}^{M} \left( \overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left( \overline{\mathbf{x}}_{jm} \beta^{k,s} + \lambda_m^{k,s} \right) \right)^2,$$

to recover grouping structure  $\mathcal{B}^{s+1}$ .

Compute:

$$(\beta^{1,s+1},\ldots,\beta^{K,s+1},\lambda_1^{K,s+1},\ldots,\lambda_M^{K,s+1}) = \underset{\beta^1,\ldots,\beta^K,\lambda_1^1,\ldots,\lambda_M^K}{\operatorname{arg\,min}} \sum_{j=1}^J \sum_{m=1}^M \left(\overline{\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}}} - \left(\bar{x}_{jm}\beta^{k(j),s+1} + \lambda_m^{k(j),s+1}\right)\right)^2$$

Repeat until convergence of parameters.

## Second Step: Linear Regression

Based on the estimated classification from the first step, we follow Berry (1994).

Under normalization  $\delta_0 = 0$  and  $k(0) = \{0\}$ 

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_0} = \delta_{jm} + (1 - \sigma^{k(j)}) \log \mathbb{P}_{jm|k(j)} + \nu_{jm}$$

Substituting the expression for  $\delta_i$ :

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \beta_p p_{jm} + x_{jm}\beta + (1 - \sigma^{k(j)}) \log \mathbb{P}_{jm|k(j)} + \nu_{jm}$$

Linear regression equation on  $x_{jm}$  and  $\log \mathbb{P}_{jm|k(j)}$ :

• Construct  $\mathbb{P}_{j|k(j)}$  based on estimated groups from first step  $\{\hat{B}_k\}_{k=1}^{K}$ :

$$\hat{\mathbb{P}}_{jm|k} = \frac{\mathbb{P}_{jm}}{\sum_{j \in \hat{B}_k} \mathbb{P}_j}$$

Simultaneity problem: → Instrument P̂<sub>jm|k(j)</sub> using second order moments of exogenous x<sub>jm</sub>.

# Outline

#### Motivation

2 Consumer choice model

#### Identification

#### 4 Estimation

- Case 1: Panel Data
- Case 2: Exogenous Shifters
- 5 Statistical Properties
- 6 Choosing the Number of Groups
- Monte Carlo
- Application: US Automobile Data

Assume indirect utility model is described as:

$$\delta_{jm} = \beta_p p_{jm} + x_{jm} \beta_x + \nu_{jm}$$

If  $\mathbb{E}[\nu_{jm}p_{jm}] \neq 0$ , the algorithm outlined before does not consistently recover the groups.

To overcome this issue, we use a Control Function Approach defined in Petrin and Train (2010).

We require the existence of  $z_{jm}$  such that

 $\mathbb{E}[\nu_{jm}|x_{jm},z_{jm}]=0.$ 

## **Control Function Approach**

Concretely, there is an unobservable confounder  $\mu_{jm}$  such that:

$$p_{jm} = f(x_{jm}, z_{jm}, \mu_{jm})$$
 and  $\nu_{jm} = g(\mu_{jm}, \varepsilon_{jm}),$ 

for which we assume that

$$p_{jm} \perp \nu_{jm} |\mu_{jm}|$$

For simplicity we also assume:

$$p_{jm} = f(x_{jm}, z_{jm}; \gamma) + \mu_{jm}$$
 and  $\nu_{jm} = CF(\mu_{jm}) + \varepsilon_{jm}$ 

Include  $CF(\mu_{jm})$  as part of indirect utility :

$$\begin{aligned} \delta_{jm} &= \beta_p p_{jm} + x_{jj} \beta_x + \nu_{jm} \\ &= \beta_p p_{jm} + x_{jm} \beta_x + \mathsf{CF}(\mu_{jm}) + \varepsilon_{jm}, \end{aligned}$$

with  $\mathbb{E}[\varepsilon_{jm}|p_{jm}, x_{jm}, \mu_{jm}] = 0.$ 

Substituting  $\delta_{jm}$  inside choice probabilities:

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \beta_p^{k(j)} p_{jm} + x_j \beta_x^{k(j)} + \widetilde{CF}(\mu_{jm}) + \widetilde{\lambda}_m^{k(j)} + \widetilde{\varepsilon}_{jm},$$

which is a known expression with  $p_{jm}, x_{jm}$  and  $\mu_{jm}$  as observable covariates.

This expression motivates the following steps:

O Project  $p_{jm}$  on exogenous variables  $(z_{jm}, x_{jm})$  to estimate  $\mu_{jm}$ 

$$\hat{\mu}_{jm} = p_{jm} - \hat{f}(x_{jm}, z_{jm})$$

- 2 Include  $\hat{\mu}_{jm}$  in our classification algorithm as a control for the confounder between  $\nu_{jm}$  and  $p_{jm}$ .
- Sollow step 2 as if the groups are known.

### **Statistical Properties**

• Let us consider the following simplified model:

$$\log \mathbb{P}_{jm} - \log \mathbb{P}_{0m} = \beta_p^{k(j)} p_{jm} + x_{jm} \beta_x^{k(j)} + \lambda_m^{k(j)} + \nu_{jm}$$

with  $\mathbb{E}[\nu_{jm}|p_{j1},\ldots,p_{jM},x_{j1},\ldots,x_{jM},\lambda_1^1,\ldots\lambda_M^K] = 0.$ 

- Build upon results in Bonhomme and Manresa (2015).
- Work in progress: allow for product fixed effects and projection of prices.

• Group separation. For simplicity, assume simplest model:

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \lambda^{k(j)} + \nu_{jm}, \quad \text{ with } k \in \{1, 2\}, \ \lambda^2 > \lambda^1, \ \nu_{jm} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$$

It follows

$$\mathbb{P}(\hat{k}(j)=2|k(j)=1)=\mathbb{P}\Big(\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{2})^{2}<\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{1})^{2}\Big)=\mathbb{P}(\bar{\nu}_{j}>\lambda^{2}-\lambda^{1})=1-\Phi\Big(\sqrt{M}\big(\frac{\lambda^{2}-\lambda^{1}}{2}\big)\Big)$$

• Group separation. For simplicity, assume simplest model:

$$\log \frac{\mathbb{P}_{jm}}{\mathbb{P}_{0m}} = \lambda^{k(j)} + \nu_{jm}, \quad \text{ with } k \in \{1, 2\}, \ \lambda^2 > \lambda^1, \ \nu_{jm} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$$

It follows

$$\mathbb{P}(\hat{k}(j)=2|k(j)=1)=\mathbb{P}\Big(\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{2})^{2}<\sum_{m=1}^{M}(\lambda^{1}+\nu_{jm}-\lambda^{1})^{2}\Big)=\mathbb{P}(\bar{\nu}_{j}>\lambda^{2}-\lambda^{1})=1-\Phi\Big(\sqrt{M}\Big(\frac{\lambda^{2}-\lambda^{1}}{2}\Big)\Big)$$

- Rank condition: Variation in x at the intersection of any group with true groups
- Exponential tails and limited market dependence on the error term

• It can be shown:

$$\mathbb{P}(\sup_{j\in\{1,2,\ldots,J\}}|\widehat{k}(j)-k(j)|>0)=o(1)+o(JM^{-\delta})$$

for any  $\delta > 0$ , as J and M go to infinity.

- Both J and M grow to infinity, but M can grow at a much lower rate!
- "Super consistency" of group estimation  $\implies$  standard inference in the second step.

#### Choosing the Number of Groups

## Choosing K: Cross-Validation with Elbow Method

So far we have assumed the number of groups is known.

In practice, we can also estimate the number of groups using a N-fold cross-validation procedure.

For all  $k \in \mathcal{K}$ :

- Divide products into *n* equal parts, *P*<sub>1</sub>, ..., *P*<sub>N</sub>.
- Fix one part  $P_n$  and estimate grouping structure and grouping parameters in the other N 1 parts.
- Classify products across estimated groups in part P<sub>n</sub> and compute out-of-sample MSE

$$MSE_n(k) = \frac{1}{J \cdot M} \sum_{m=1}^{M} \sum_{j \in P_n} (y_j - \beta_{m,-n}^{k(j)} x_j - \lambda_{m,-n}^{k(j)})^2$$

• Take average across *N* folds:

$$MSE(k) = \frac{1}{N} \sum_{n=1}^{N} MSE_n(k)$$

• Choose *k* according to

 $k^* = \{k(j) | where slope of MSE(k) changes \}$ 

#### **Cross Validation: Simulation Results**

# groups = 3, # folds = 5, # MC samples = 50



Moving M

#### Monte Carlo

- Indirect utility  $\delta_{jm}$  is given by

$$\delta_{jm} = \beta_p p_{jm} + \beta_1 x_{jm,1} + \beta_2 x_{jm,2} + \xi_j + \nu_{jm},$$

where  $p_{jm,1}$  are prices and  $(x_{jm,1}, x_{jm,2})$  are exogenous covariates. We set:

•  $p_{jm,1} = \tilde{p}_{jm} + \xi_{j,p}$ , with: •  $\tilde{p}_{jm,1} \stackrel{i.i.d.}{\sim} \mathcal{N}(k(j) \cdot \arctan(m+1), 1)$ •  $\begin{bmatrix} \xi_{j,p} \\ \xi_{j} \end{bmatrix} \sim \mathcal{N}(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix})$ •  $x_{jm,1}, x_{jm,2} \stackrel{i.i.d.}{\sim} \mathcal{N}(k(j) \cdot (-1)^{k(j)} \cdot \arctan(m+1), 1)$ •  $\mathbb{E}[\nu_{jm}|p_{j1}, x_{j1,1}, x_{j1,2}, \dots, p_{jM}, x_{jM,1}, x_{jM,2}, \xi_{j}] = 0$  with  $\nu_{jm} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$ •  $\beta_{p} = -1$  and  $\beta_{1} = \beta_{2} = 1$ 

- Number of groups *K* = 3 with  $\sigma_1$  = 0.3,  $\sigma_2$  = 0.5,  $\sigma_3$  = 0.7.

We leverage the closed form solution of Nested Logit models.

Construct  $IV_m^k$  as follows:

$$V_{k,m} = \Big(\sum_{d \in B_k} e^{\frac{\delta_{dm}}{\sigma^k}}\Big)$$

Finally, log probabilities are given by:

$$\log \mathbb{P}_{jm} - \log \mathbb{P}_{0m} = \frac{1}{\sigma^{k(j)}} \delta_{jm} + (\sigma^{k(j)} - 1) \log IV_m^{k(j)}$$

## Results: K = 3, I = 1000, B = 500

|     |               |           |              |              | $\beta_p$ | $\beta_1$ | $\beta_2$    | $\sigma_1$ | $\sigma_2$ | $\sigma_3$ |       |       |       |
|-----|---------------|-----------|--------------|--------------|-----------|-----------|--------------|------------|------------|------------|-------|-------|-------|
| М   | J             | % Matches | Time (s)     | True         | -1        | 1         | 1            | 0.3        | 0.5        | 0.7        |       |       |       |
| 10  | 100           | 0.911     | 2            | Mean $\beta$ | -0.898    | 0.896     | 0.894        | 0.254      | 0.425      | 0.627      |       |       |       |
| 10  | 100           | 0.711     | 2            | Std $\beta$  | 0.122     | 0.131     | 0.131        | 0.065      | 0.063      | 0.063      |       |       |       |
| 50  | 100           | 1.000     | 13           | Mean $\beta$ | -0.956    | 0.957     | 0.958        | 0.286      | 0.476      | 0.669      |       |       |       |
| 50  | 100           | 1.000     | 15           | Std $\beta$  | 0.058     | 0.059     | 0.059        | 0.030      | 0.031      | 0.030      |       |       |       |
| 100 | 100           | 1.000     | 66           | Mean $\beta$ | -0.971    | 0.970     | 0.971        | 0.291      | 0.485      | 0.679      |       |       |       |
| 100 | 100           | 1.000     | 00           | Std $\beta$  | 0.046     | 0.046     | 0.046        | 0.024      | 0.024      | 0.024      |       |       |       |
| 10  | 500           | 0.070     | 0.070        | 0.070        | 0.070     | 14        | Mean $\beta$ | -0.912     | 0.904      | 0.903      | 0.264 | 0.429 | 0.629 |
| 10  | 500 0.879     | 14        | Std $\beta$  | 0.078        | 0.080     | 0.080     | 0.038        | 0.037      | 0.039      |            |       |       |       |
| 50  | 500 0.00/     | .996 273  | Mean $\beta$ | -0.959       | 0.959     | 0.958     | 0.287        | 0.478      | 0.671      |            |       |       |       |
| 50  | 500           | 0.996     | 273          | Std $\beta$  | 0.047     | 0.047     | 0.047        | 0.024      | 0.024      | 0.024      |       |       |       |
| 100 | 500           | 1.000     | 710          | Mean $\beta$ | -0.967    | 0.967     | 0.967        | 0.290      | 0.483      | 0.677      |       |       |       |
| 100 | 500           | 1.000     |              | Std $\beta$  | 0.044     | 0.044     | 0.044        | 0.023      | 0.023      | 0.022      |       |       |       |
| 10  | 1000          | 0.070     | 25           | Mean $\beta$ | -0.903    | 0.898     | 0.897        | 0.267      | 0.427      | 0.625      |       |       |       |
| 10  | 1000          | 0.870     | 25           | Std $\beta$  | 0.054     | 0.056     | 0.056        | 0.026      | 0.027      | 0.026      |       |       |       |
| 50  | 50 1000 0.988 | 0.988     | 471          | Mean $\beta$ | -0.963    | 0.963     | 0.963        | 0.289      | 0.478      | 0.673      |       |       |       |
| 50  | 1000          | 0.700     | 58 4/1       | Mean std     | 0.0381    | 0.0382    | 0.0381       | 0.0190     | 0.0192     | 0.0192     |       |       |       |
| 100 | 1000          | 1.000     | 2145         | Mean $\beta$ | -0.976    | 0.976     | 0.975        | 0.292      | 0.487      | 0.683      |       |       |       |
| 100 | 1000          | 1.000     | 2145         | Std $\beta$  | 0.047     | 0.047     | 0.047        | 0.014      | 0.024      | 0.033      |       |       |       |

#### Application: US Automobile Data

We use US Automobile data from BLP (1995).<sup>1</sup>

Information on (essentially) all models marketed between 1971 and 1990.

Models both enter and exit over this period  $\implies$  unbalanced panel.

Total sample size is 2217 model/years representing 557 distinct models.

We set different years as different markets.

<sup>1</sup>We use data from the R-package hdm developed by Chernozhukov, Hansen & Spindler (2019)

Description of product characteristics:

- *log share*: log of market shares
- price: deflated price to 1983 dollars using CPI
- mpd: miles per dollar
- air: air conditioning
- *mpg*: miles per gallon rating
- space:size (measured as length times width)
- hpwt: the ratio of horsepower to weight (in HP per 10 lbs)

- We consider an unbalanced panel of cars with:
  - At least five years of data.
  - At least three consecutive years.
- We are left with 82 products.
- We adapt our classification algorithm to allow for "missing data":
  - $\implies$  Products can enter and exit over time.
  - $\implies$  Group of products can also enter and exit over time!

#### Statistics of subsample of cars (N=82)

|                     | Mean  | Std. Dev. | Median | Min    | Max    | t-stat |
|---------------------|-------|-----------|--------|--------|--------|--------|
| Price               | 147   | 7.911     | -2.532 | -6.601 | 43.351 | -1.06  |
| Miles per Dollar    | 2.349 | .513      | 2.376  | 1.352  | 3.805  | 2.78   |
| AC                  | .299  | .409      | 0      | 0      | 1      | 0.49   |
| Miles per Gallon    | 2.214 | .46       | 2.195  | 1.38   | 3.42   | 1.45   |
| Space               | 1.266 | .187      | 1.223  | .951   | 1.711  | 0.13   |
| Horse Power         | .407  | .069      | .386   | .308   | .727   | -0.23  |
| Market Share        | .001  | .001      | .001   | 0      | .004   | 0.00   |
| Yearly Observations | 9.085 | 4.264     | 7      | 5      | 20     | 10.42  |
| Year Entry          | 1980  | 5.261     | 1983   | 1971   | 1986   | -4.62  |
| Year Exit           | 1989  | .88       | 1990   | 1988   | 1990   | 20.41  |



#### BLP Application: Choosing the number of groups



| I                | Mean   | Std.  | 1      | 2        | 3        | 4      | 5        | 6      | 7         | 8         |
|------------------|--------|-------|--------|----------|----------|--------|----------|--------|-----------|-----------|
| Shares           | 0.001  | 0.001 | 0.004  | 0.009    | 0.008    | 0.012  | 0.006    | 0.002  | 0.006     | 0.002     |
| Price            | -0.741 | 6.898 | -3.679 | -3.077   | -1.694   | -1.621 | -0.688   | -0.610 | -0.292    | 0.211     |
| Log HP           | -0.940 | 0.183 | -1.054 | -0.973   | -0.984   | -0.976 | -0.942   | -0.876 | -0.953    | -0.915    |
| Log Miles per \$ | 0.767  | 0.320 | 0.919  | 0.623    | 0.653    | 0.650  | 0.823    | 0.641  | 0.610     | 0.642     |
| AC               | 0.277  | 0.448 | 0.072  | 0.315    | 0.259    | 0.268  | 0.132    | 0.144  | 0.303     | 0.267     |
| Log Space        | 0.239  | 0.164 | 0.096  | 0.315    | 0.259    | 0.282  | 0.176    | 0.180  | 0.303     | 0.281     |
| Туре             |        |       | Subc.  | Compact  | Mid-size | Luxury | Mid-size | Sport  | Mid-size  | Full-size |
| of car           |        | I     | 1      | Mid-size | Luxury   |        | Luxury   |        | Full-size | Luxury    |
| # Products       | 82     | 2     | 7      | 11       | 11       | 15     | 12       | 8      | 12        | 6         |

## **BLP** Application: Evolution of Shares



# **BLP Application: Second-step Results**

#### **Estimates Preference Parameters**

|              | β         | $\sigma_{\hat{eta}}$ |
|--------------|-----------|----------------------|
| Price        | -0.064*** | (0.029)              |
| Horse Power  | -0.148    | (0.176)              |
| Miles per \$ | 0.222     | (0.187)              |
| AC           | 0.1621    | (0.133)              |
| Space        | 0.791     | (0.775)              |

#### **Estimates Within-Nest Correlation**

|                         | Group    |                 |          |          |          |          |          |          |  |  |  |
|-------------------------|----------|-----------------|----------|----------|----------|----------|----------|----------|--|--|--|
|                         | 1        | 1 2 3 4 5 6 7 8 |          |          |          |          |          |          |  |  |  |
| $\hat{\sigma}$          | 0.868*** | 0.596***        | 0.472*** | 0.827*** | 0.722*** | 0.836*** | 0.528*** | 0.572*** |  |  |  |
| $\sigma_{\hat{\sigma}}$ | (0.155)  | (0.277)         | (0.165)  | (0.104)  | (0.273)  | (0.139)  | (0.145)  | (0.173)  |  |  |  |
| F 1st stage             | 50.673   | 2.7697          | 6.241    | 6.320    | 6.963    | 16.311   | 11.805   | 11.748   |  |  |  |

#### **Moving K: Preference Parameters**



| # Groups | $\sigma_1$ | $\sigma_2$ | $\sigma_3$ | $\sigma_4$ | $\sigma_5$ | $\sigma_6$ | $\sigma_7$ | $\sigma_8$ | $\sigma_9$ |
|----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 2        | 0.525      | 0.372      |            |            |            |            |            |            |            |
| 3        | 0.619      | 0.614      | 0.590      |            |            |            |            |            |            |
| 4        | 0.693      | 0.660      | 0.499      | 0.459      |            |            |            |            |            |
| 5        | 0.816      | 0.681      | 0.573      | 0.547      | 0.362      |            |            |            |            |
| 6        | 0.807      | 0.759      | 0.601      | 0.355      | 0.237      | 0.213      |            |            |            |
| 7        | 1.235      | 0.850      | 0.837      | 0.704      | 0.659      | 0.526      | 0.330      |            |            |
| 8        | 0.868      | 0.836      | 0.827      | 0.722      | 0.596      | 0.572      | 0.528      | 0.472      |            |
| 9        | 0.965      | 0.758      | 0.729      | 0.676      | 0.644      | 0.535      | 0.528      | 0.439      | -0.160     |

Notes: Bold = different from 0 at the 95%, Italic = different from 1 at the 95%.

• Method that simultaneously estimates nests and preference parameters in nested logit models.

- Method that simultaneously estimates nests and preference parameters in nested logit models.
- Two models to overcome endogeneity of prices:
  - Panel with product fixed effects that are correlated with prices
  - Panel with exogenous shifters onto which project prices

- Method that simultaneously estimates nests and preference parameters in nested logit models.
- Two models to overcome endogeneity of prices:
  - Panel with product fixed effects that are correlated with prices
  - Panel with exogenous shifters onto which project prices
- Monte Carlo simulations:
  - $\bullet~\sim$  90% match rate with only 10 and  $\sim$  100% with 100 markets.
  - Biases in preference parameters decrease as number of market increases.

- Method that simultaneously estimates nests and preference parameters in nested logit models.
- Two models to overcome endogeneity of prices:
  - Panel with product fixed effects that are correlated with prices
  - Panel with exogenous shifters onto which project prices
- Monte Carlo simulations:
  - $\bullet~\sim$  90% match rate with only 10 and  $\sim$  100% with 100 markets.
  - Biases in preference parameters decrease as number of market increases.
- BLP application:
  - Eight groups with separation in prices, car characteristics, and market trends.
  - Wide range of substitution patterns, from very independent to highly correlated.

A traveler has a choice of commuting by **car** or taking a **blue bus** 

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

A traveler has a choice of commuting by **car** or taking a **blue bus** 

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

Now a **red bus** is introduced, exactly equal to blue bus (but the color)  $\implies \frac{\mathbb{P}_{rb}}{\mathbb{P}_{bb}} = 1$ 

Given IIA,  $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}} = 1$ . The only consistent model with both is

$$\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$$

A traveler has a choice of commuting by **car** or taking a **blue bus** 

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

Now a **red bus** is introduced, exactly equal to blue bus (but the color)  $\implies \frac{\mathbb{P}_{rb}}{\mathbb{P}_{bb}} = 1$ 

Given IIA,  $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}} = 1$ . The only consistent model with both is

$$\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$$

Is  $\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$  realistic?

A traveler has a choice of commuting by **car** or taking a **blue bus** 

Assume indirect utility from the two is the same so

$$\mathbb{P}_{c} = \mathbb{P}_{bb} = \frac{1}{2} \implies \frac{\mathbb{P}_{c}}{\mathbb{P}_{bb}} = 1$$

Now a **red bus** is introduced, exactly equal to blue bus (but the color)  $\implies \frac{\mathbb{P}_{rb}}{\mathbb{P}_{bb}} = 1$ 

Given IIA,  $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}} = 1$ . The only consistent model with both is

$$\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$$

Is  $\mathbb{P}_c = \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{3}$  realistic? Not really. If blue and red only differ in color, we should expect

$$\mathbb{P}_c = \frac{1}{2} \qquad \qquad \mathbb{P}_{bb} = \mathbb{P}_{rb} = \frac{1}{4}$$

The ratio  $\frac{\mathbb{P}_c}{\mathbb{P}_{bb}}$  should actually change with the introduction of the red bus!

May 4, 2021

## **Cross Validation: Results**

# groups = 3, # products = 100, # folds = 5



#### Table: Average characteristics of all cars, (N = 557)

|                     | Mean  | Std. Dev. | Median | Min    | Max    | t-stat |
|---------------------|-------|-----------|--------|--------|--------|--------|
| Price               | .862  | 8.983     | -2.516 | -8.368 | 43.351 | 1.06   |
| Miles per Dollar    | 2.175 | .641      | 2.094  | 1.055  | 6.437  | -2.78  |
| AC                  | .275  | .424      | 0      | 0      | 1      | -0.49  |
| Miles per gallon    | 2.133 | .552      | 2.07   | 1      | 5.3    | -1.45  |
| Space               | 1.263 | .216      | 1.223  | .79    | 1.888  | -0.13  |
| Horse Power         | .409  | .098      | .385   | .207   | .888   | 0.23   |
| Market Share        | .001  | .001      | 0      | 0      | 0.006  | 0.00   |
| Yearly Observations | 3.899 | 3.857     | 2      | 1      | 20     | -10.42 |
| Entry Year          | 1980  | 6.511     | 1981   | 1971   | 1990   | 4.62   |
| Exit Year           | 1984  | 6.101     | 1986   | 1971   | 1990   | -20.41 |

# **BLP Application: Evolution of Size**



May 4, 2021

Data-Driven Nests

Almagro and Manresa 52/53

#### **BLP Application: First Step Group Fixed Effects**



May 4, 2021

Data-Driven Nests

Almagro and Manresa 53/53