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Motivation
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Discrete ChoiceModels (I)

Models of discrete choice are the workhorse in demand estimation with random utility
Based on the random utility framework

Utility is driven by observable characteristics and an idiosyncratic taste shock
Agents choose the alternative with highest utility

If idiosyncratic shocks are ∼ Type I EV Ô⇒ Multinomial logit:
Closed form solutions of choice probability
Low number of parameters
Generates unrealistic substitution patterns
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Discrete ChoiceModels (II)

A number of different models have been proposed to alleviate these “undesirable features”
RandomCoefficients (RC): Logit with heterogeneity in preferences across consumers

Flexible substitution patterns.
Computationally expensive: non-linear optimization, no closed-form demand.
Distributional assumptions on heterogeneity.

Nested Logit (NL): Natural extension ofMultinomial Logit
Closed form solutions, parsimony (linear IV regression), interpretability.
Less flexible substitution patterns.
Nests need to be specified ex-ante.
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This Paper: Estimate Groups in Nested Logit

Methodology to estimate the nest structure as well as preference parameters
No assumption on the nest structure Ô⇒ recovered from the data
Two-step estimation procedure:

1 Use k-means to estimate the nest structure
2 Estimate the utility parameters as if the groups where known

Identification of the nests and statistical properties.
Monte Carlo Simulations
Empirical Application: US Automobile Sale Data.
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Related Literature

Discrete ChoiceModels:McFadden (1978), Cardell (1997), Kovach & Tserenjigmid (2020)
EmpiricalModels with Nesting Structures: Goldberg (1995), Einav (2007), Grennan (2013), Ciliberto &
Williams (2014), Conlon & Rao (2016), Miller &Weinberg (2017)
Group Fixed Effect Estimator: Han&Moon (2010), Bonhomme&Manresa (2015), Phillips et al (...)
Alternative Grouping Structure: Fosgerau, Monardo, &De Palma (2021), Hortacsu, Lieber, Monardo & de
Paula (ongoing)
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Consumer choicemodel
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Consumer choicemodel: a recap
Consider the following indirect utility model:

Vij = δj + εij

for agent iwhen choosing j.
When εij ∼ Type I EV, choice probabilities are given by:

Pj =
exp(δj)
∑j′ exp(δj′)

With K groups and (εi1, ..., εiJ) have cumulative distribution ∼ exp ( −∑Kk=1(∑j∈BK e
− εj

σk(j) )σ
k(j)

):

Pj =
e

δj
σk(j) (∑d∈Bk e

δd
σk(d) )σ

k(j)−1

∑Kl=1 (∑d∈Bl(j) e
δd

σl(d) )σ
l
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Nested Logit as Sequential Choice

Choose nest, then alternative within nest:

Pj =
e

δj
σk(j)

∑d∈Bk e
δd

σk(d)

(∑d∈Bk e
δd

σk(d) )σ
k(j)

∑Kl=1 (∑d∈Bl e
δd

σl(d) )σ
l
= Pj∣k(j)Pk(j)

Commute

Public Private

Subway Bus Taxi Car Bike Walk
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Nested Logit: Substitution Patterns

Elasticities:
For Logit:

Eqj = −Pq
∂δq
∂pq

pq

For Nested Logit:

Eqj =
⎧⎪⎪⎨⎪⎪⎩

−Pq ∂δq∂pq pq if q ∈ Bk′(q) ≠ Bk(j)
(σk(j) − 1)Pq∣k(j) ∂δq∂pq pq − Pq

∂δq
∂pq pq if q ∈ Bk(j)

Ô⇒ ElasticityMultinomial Logit ≤ Elasticity Nested Logit (within nest).
Ô⇒ Products within same nest closer substitutes than across nests.
Ô⇒ More substitution as σk decreases.
Ô⇒ (1 − σk(j)) ∈ [0,1] can be interpreted as correlation within nest.

Blue Bus - Red Bus
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Identification
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Identification of Groups (I)
Let

IVk ≡ ∑
d∈Bk

e
δd

σk(d) and IV ≡
K
∑
l=1

( ∑
d∈Bl
e

δd
σk(d) )σ

l

then
Pj =

e
δj

σk(j) (∑d∈Bk e
δd

σk(d) )σ
k(j)−1

∑Kl=1 (∑d∈Bl e
δd

σl(d) )σ
l

=
e

δj
σk(j) (IVk(j))σ

k(j)−1

IV

Taking logs:

logPj =
δj
σk(j)

+ (σk(j) − 1) log IVk(j) − log IV.
We assume δ0 = 0 and k(0) = {0} as in Berry (1994). It follows:

log
Pj
P0

= δj
σk(j)

+ (σk(j) − 1) log IVk(j)
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Identification of Groups (II)
Wenow assume linear utility in one observable component:

δj = βxj

Substituting inside choice probabilities
log

Pj
P0

= β

σk(j)
xj + (σk(j) − 1) log IVk(j)

Denote
βk(j) = β

σk(j)
and λk(j) = (σk(j) − 1) log IVk(j)

Weobtain the following equation:
log

Pj
P0

= βk(j)xj + λk(j)

Ô⇒ βk and λk common to all products within the same nest!
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Identification of Groups (III)

log
Pj
P0

= βk(j)xj + λk(j)

Intuition: Assume products j and j′ have same x’s
1 If log

Pj
P0 is equal to log

P′j
P0 Ô⇒ j and j′ are in the same group.

2 If log
Pj
P0 is different from log

P′j
P0 Ô⇒ j and j′ are not in the same group.

Remarks:
1 We think of βk(j) and λk(j) as group-specific slope and intercept in a regression equation.
2 Identification of the groups is hence obtainedwithout fully imposing the structure of themodel.
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Identification of Structural Parameters

The first step not only recovers groups but also {β1, . . . , βK, λ1, . . . , λK}.
Recall

log
Pj
P0

= δj
σk(j)

+ λk(j), λk = (σk − 1) log IVk = (σk − 1) log∑
j∈Bk
e

δj
σk and βk = β

σk

Then, σk and β are jointly identified from the following equations:

λk = σ
k − 1
σk

log (∑
j∈Bk

Pj
P0

) and βk = β

σk
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Estimation
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Relevant Empirical Models

In what follows, we assume that covariates x are exogenous but allow for endogeneity of prices p.
We consider two different models of indirect utility:

1 A panel data framework with product fixed effects:
δjm = βppjm + xjmβx + ξj + νjm,

where
E[νjm∣pj1, . . . ,pjM, xj1, . . . , xjM, ξj] = 0

2 Panel data with exogenous shifters:
δjm = βppjm + xjmβx + νjm,

where there exists zjm such that
E[νjm∣xjm, zjm] = 0
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Outline
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2 Consumer choicemodel
3 Identification
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Case 1: Panel Data
Case 2: Exogenous Shifters

5 Statistical Properties
6 Choosing the Number of Groups
7 Monte Carlo
8 Application: US Automobile Data
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Panel Data: Estimation
Recall, indirect utility is defined as:

δjm = βppjm + xjmβx + ξj + νjm,
where

E[νjm∣pj1, . . . ,pjM, xj1, . . . , xjM, ξj] = 0
Therefore,

log
Pjm
P0m

= βppjm + xjmβx + ξj + νjm
σk(j)

+ λk(j),m = βk(j)p pjm + xjmβk(j)x + ξ̃j + ν̃jm + λk(j)m ,

where ξ̃j = ξj
σk(j) and ν̃jm = νjm

σk(j)

Wedemean data to remove fixed effects ξ̃j

log
Pjm
P0m

= βk(j)p p̄jm + x̄jmβk(j)x + λ̄k(j)m + ν̄jm,

where ȳ indicates demeaned variables.
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First Step: Classification Algorithm
Wepropose the following classification algorithm based on Bonhomme andManresa (2015):

1 Let (β1,0, . . . , βK,0, λK,01 , . . . , λK,0M ) be a starting value.

2 For (β1,s, . . . , βK,s, λK,s1 , . . . , λK,sM ) , compute for all j ∈ J:

k(j)s+1 = arg min
k∈{1,...,K}

M
∑
m=1

(log
Pjm
P0m
− (x̄jmβk,s + λk,sm ))

2
,

to recover grouping structureBs+1.
3 Compute:

(β1,s+1, . . . , βK,s+1, λK,s+11 , . . . , λK,s+1M ) =

arg min
β1,...,βK,λ11,...,λKM

J
∑
j=1

M
∑
m=1

(log
Pjm
P0m
− (x̄jmβk(j),s+1 + λk(j),s+1m ))

2

4 Repeat until convergence of parameters.
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Second Step: Linear Regression
Based on the estimated classification from the first step, we follow Berry (1994).
Under normalization δ0 = 0 and k(0) = {0}

log
Pjm
P0

= δjm + (1 − σk(j)) logPjm∣k(j) + νjm

Substituting the expression for δj:
log

Pjm
P0m

= βppjm + xjmβ + (1 − σk(j)) logPjm∣k(j) + νjm

Linear regression equation on xjm and logPjm∣k(j):
Construct Pj∣k(j) based on estimated groups from first step {B̂k}Kk=1:

P̂jm∣k =
Pjm
∑j∈B̂k Pj

Simultaneity problem: Ô⇒ Instrument P̂jm∣k(j) using second order moments of exogenous xjm.
May 4, 2021 Data-Driven Nests Almagro andManresa 21 / 53



Outline
1 Motivation
2 Consumer choicemodel
3 Identification
4 Estimation

Case 1: Panel Data
Case 2: Exogenous Shifters

5 Statistical Properties
6 Choosing the Number of Groups
7 Monte Carlo
8 Application: US Automobile Data

May 4, 2021 Data-Driven Nests Almagro andManresa 22 / 53



Control Function Approach: Estimation

Assume indirect utility model is described as:
δjm = βppjm + xjmβx + νjm

IfE[νjmpjm] ≠ 0, the algorithm outlined before does not consistently recover the groups.
To overcome this issue, we use a Control Function Approach defined in Petrin and Train (2010).
We require the existence of zjm such that

E[νjm∣xjm, zjm] = 0.
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Control Function Approach

Concretely, there is an unobservable confounder µjm such that:
pjm = f(xjm, zjm, µjm) and νjm = g(µjm, εjm),

for which we assume that
pjm ⊥⊥ νjm∣µjm.

For simplicity we also assume:
pjm = f(xjm, zjm;γ) + µjm and νjm = CF(µjm) + εjm

Include CF(µjm) as part of indirect utility :
δjm = βppjm + xjjβx + νjm

= βppjm + xjmβx + CF(µjm) + εjm,

withE[εjm∣pjm, xjm, µjm] = 0.
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Control Function Approach (cont)

Substituting δjm inside choice probabilities:
log

Pjm
P0m

= βk(j)p pjm + xjβk(j)x + C̃F(µjm) + λ̃k(j)m + ε̃jm,

which is a known expression with pjm, xjm and µjm as observable covariates.
This expressionmotivates the following steps:

1 Project pjm on exogenous variables (zjm, xjm) to estimate µjm
µ̂jm = pjm − f̂(xjm, zjm)

2 Include µ̂jm in our classification algorithm as a control for the confounder between νjm and pjm.
3 Follow step 2 as if the groups are known.
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Statistical Properties
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Statistical Properties: First Step

Let us consider the following simplifiedmodel:
logPjm − logP0m = βk(j)p pjm + xjmβk(j)x + λk(j)m + νjm

withE[νjm∣pj1, . . . ,pjM, xj1, . . . , xjM, λ11, . . . λKM] = 0.
Build upon results in Bonhomme andManresa (2015).
Work in progress: allow for product fixed effects and projection of prices.
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Three key assumptions

Group separation. For simplicity, assume simplest model:
log

Pjm
P0m

= λk(j) + νjm, with k ∈ {1,2}, λ2 > λ1, νjm i.i.d.∼ N(0,1)
It follows
P(k̂(j) = 2∣k(j) = 1) = P(

M
∑
m=1

(λ1 + νjm − λ2)2 <
M
∑
m=1

(λ1 + νjm − λ1)2) = P(ν̄j > λ2 − λ1) = 1−Φ(
√
M(λ

2 − λ1
2 ))

Rank condition: Variation in x at the intersection of any groupwith true groups
Exponential tails and limitedmarket dependence on the error term
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Super consistency

It can be shown:
P( sup

j∈{1,2,...,J}
∣̂k(j) − k(j)∣ > 0) = o(1) + o(JM−δ)

for any δ > 0, as J andM go to infinity.
Both J andM grow to infinity, butM can grow at amuch lower rate!
“Super consistency” of group estimation Ô⇒ standard inference in the second step.
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Choosing the Number of Groups
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Choosing K: Cross-Validation with ElbowMethod
So far we have assumed the number of groups is known.
In practice, we can also estimate the number of groups using aN-fold cross-validation procedure.
For all k ∈ K:

Divide products into n equal parts, P1, ...,PN.
Fix one part Pn and estimate grouping structure and grouping parameters in the otherN − 1 parts.
Classify products across estimated groups in part Pn and compute out-of-sampleMSE

MSEn(k) =
1
J ⋅M

M
∑
m=1
∑
j∈Pn

(yj − βk(j)m,−nxj − λk(j)m,−n)
2

Take average acrossN folds:
MSE(k) = 1N

N
∑
n=1
MSEn(k)

Choose k according to
k∗ = {k(j)∣where slope ofMSE(k) changes}

May 4, 2021 Data-Driven Nests Almagro andManresa 31 / 53



Cross Validation: Simulation Results
# groups = 3, # folds = 5, #MC samples = 50

MovingM
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Monte Carlo
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Monte Carlo Design (I)
- Indirect utility δjm is given by

δjm = βppjm + β1xjm,1 + β2xjm,2 + ξj + νjm,
where pjm,1 are prices and (xjm,1, xjm,2) are exogenous covariates. We set:

pjm,1 = p̃jm + ξj,p, with:
p̃jm,1 i.i.d.∼ N(k(j) ⋅ arctan(m + 1),1)
[
ξj,p
ξj

] ∼ N([
0
0] , [

1 0.5
0.5 1 ] )

xjm,1, xjm,2 i.i.d.∼ N(k(j) ⋅ (−1)k(j) ⋅ arctan(m + 1),1)
E[νjm∣pj1, xj1,1, xj1,2, . . . ,pjM, xjM,1, xjM,2, ξj] = 0 with νjm

i.i.d.∼ N(0,1)
βp = −1 and β1 = β2 = 1

- Number of groups K = 3with σ1 = 0.3, σ2 = 0.5, σ3 = 0.7.
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Monte Carlo Design: Outcome variables

We leverage the closed form solution of Nested Logit models.
Construct IVkm as follows:

IVk,m = ( ∑
d∈Bk

e
δdm
σk )

Finally, log probabilities are given by:
logPjm − logP0m = 1

σk(j)
δjm + (σk(j) − 1) log IVk(j)m
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Results: K = 3, I = 1000, B = 500
βp β1 β2 σ1 σ2 σ3

M J %Matches Time (s) True -1 1 1 0.3 0.5 0.7
10 100 0.911 2 Mean β -0.898 0.896 0.894 0.254 0.425 0.627

Std β 0.122 0.131 0.131 0.065 0.063 0.063
50 100 1.000 13 Mean β -0.956 0.957 0.958 0.286 0.476 0.669

Std β 0.058 0.059 0.059 0.030 0.031 0.030
100 100 1.000 66 Mean β -0.971 0.970 0.971 0.291 0.485 0.679

Std β 0.046 0.046 0.046 0.024 0.024 0.024
10 500 0.879 14 Mean β -0.912 0.904 0.903 0.264 0.429 0.629

Std β 0.078 0.080 0.080 0.038 0.037 0.039
50 500 0.996 273 Mean β -0.959 0.959 0.958 0.287 0.478 0.671

Std β 0.047 0.047 0.047 0.024 0.024 0.024
100 500 1.000 710 Mean β -0.967 0.967 0.967 0.290 0.483 0.677

Std β 0.044 0.044 0.044 0.023 0.023 0.022
10 1000 0.870 25 Mean β -0.903 0.898 0.897 0.267 0.427 0.625

Std β 0.054 0.056 0.056 0.026 0.027 0.026
50 1000 0.988 471 Mean β -0.963 0.963 0.963 0.289 0.478 0.673

Mean std 0.0381 0.0382 0.0381 0.0190 0.0192 0.0192
100 1000 1.000 2145 Mean β -0.976 0.976 0.975 0.292 0.487 0.683

Std β 0.047 0.047 0.047 0.014 0.024 0.033
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Application: US Automobile Data
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USAutomobile Data

Weuse US Automobile data fromBLP (1995).1

Information on (essentially) all models marketed between 1971 and 1990.
Models both enter and exit over this period Ô⇒ unbalanced panel.
Total sample size is 2217model/years representing 557 distinct models.
We set different years as different markets.

1Weuse data from the R-package hdm developed by Chernozhukov, Hansen & Spindler (2019)
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Product Characteristics

Description of product characteristics:
log share: log of market shares
price: deflated price to 1983 dollars using CPI
mpd: miles per dollar
air: air conditioning
mpg: miles per gallon rating
space:size (measured as length times width)
hpwt: the ratio of horsepower to weight (in HP per 10 lbs)
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Panel Construction

We consider an unbalanced panel of cars with:
At least five years of data.
At least three consecutive years.

We are left with 82 products.
We adapt our classification algorithm to allow for “missing data”:
Ô⇒ Products can enter and exit over time.
Ô⇒ Group of products can also enter and exit over time!
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Statistics

Statistics of subsample of cars (N=82)
Mean Std. Dev. Median Min Max t-stat

Price -.147 7.911 -2.532 -6.601 43.351 -1.06
Miles per Dollar 2.349 .513 2.376 1.352 3.805 2.78
AC .299 .409 0 0 1 0.49
Miles per Gallon 2.214 .46 2.195 1.38 3.42 1.45
Space 1.266 .187 1.223 .951 1.711 0.13
Horse Power .407 .069 .386 .308 .727 -0.23
Market Share .001 .001 .001 0 .004 0.00
Yearly Observations 9.085 4.264 7 5 20 10.42
Year Entry 1980 5.261 1983 1971 1986 -4.62
Year Exit 1989 .88 1990 1988 1990 20.41

Full sample
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BLP Application: Choosing the number of groups

May 4, 2021 Data-Driven Nests Almagro andManresa 42 / 53



BLP Application: First-step Group Characteristics

Mean Std. 1 2 3 4 5 6 7 8
Shares 0.001 0.001 0.004 0.009 0.008 0.012 0.006 0.002 0.006 0.002
Price -0.741 6.898 -3.679 -3.077 -1.694 -1.621 -0.688 -0.610 -0.292 0.211
Log HP -0.940 0.183 -1.054 -0.973 -0.984 -0.976 -0.942 -0.876 -0.953 -0.915
LogMiles per $ 0.767 0.320 0.919 0.623 0.653 0.650 0.823 0.641 0.610 0.642
AC 0.277 0.448 0.072 0.315 0.259 0.268 0.132 0.144 0.303 0.267
Log Space 0.239 0.164 0.096 0.315 0.259 0.282 0.176 0.180 0.303 0.281
Type Subc. Compact Mid-size Luxury Mid-size Sport Mid-size Full-size
of car Mid-size Luxury Luxury Full-size Luxury
# Products 82 7 11 11 15 12 8 12 6
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BLP Application: Evolution of Shares
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BLP Application: Second-step Results
Estimates Preference Parameters

β̂ σβ̂Price -0.064∗∗∗ (0.029)
Horse Power -0.148 (0.176)
Miles per $ 0.222 (0.187)
AC 0.1621 (0.133)
Space 0.791 (0.775)

EstimatesWithin-Nest Correlation
Group

1 2 3 4 5 6 7 8
σ̂ 0.868∗∗∗ 0.596∗∗∗ 0.472∗∗∗ 0.827∗∗∗ 0.722∗∗∗ 0.836∗∗∗ 0.528∗∗∗ 0.572∗∗∗
σσ̂ (0.155) (0.277) (0.165) (0.104) (0.273) (0.139) (0.145) (0.173)
F 1st stage 50.673 2.7697 6.241 6.320 6.963 16.311 11.805 11.748
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Moving K: Preference Parameters

May 4, 2021 Data-Driven Nests Almagro andManresa 46 / 53



Moving K:Within-nest Correlations

#Groups σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9
2 0.525 0.372
3 0.619 0.614 0.590
4 0.693 0.660 0.499 0.459
5 0.816 0.681 0.573 0.547 0.362
6 0.807 0.759 0.601 0.355 0.237 0.213
7 1.235 0.850 0.837 0.704 0.659 0.526 0.330
8 0.868 0.836 0.827 0.722 0.596 0.572 0.528 0.472
9 0.965 0.758 0.729 0.676 0.644 0.535 0.528 0.439 -0.160

Notes: Bold = different from 0 at the 95%, Italic = different from 1 at the 95%.
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Conclusion

Method that simultaneously estimates nests and preference parameters in nested logit models.

Twomodels to overcome endogeneity of prices:
1 Panel with product fixed effects that are correlated with prices
2 Panel with exogenous shifters onto which project prices

Monte Carlo simulations:
∼ 90%match rate with only 10 and ∼ 100%with 100markets.
Biases in preference parameters decrease as number of market increases.

BLP application:
Eight groups with separation in prices, car characteristics, andmarket trends.
Wide range of substitution patterns, from very independent to highly correlated.
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IIA is not always realistic: Red-bus-Blue-bus problem
A traveler has a choice of commuting by car or taking a blue bus
Assume indirect utility from the two is the same so

Pc = Pbb =
1
2 Ô⇒

Pc
Pbb

= 1

Now a red bus is introduced, exactly equal to blue bus (but the color) Ô⇒ Prb
Pbb

= 1
Given IIA, Pc

Pbb
= 1. The only consistent model with both is

Pc = Pbb = Prb =
1
3

Is Pc = Pbb = Prb = 1
3 realistic? Not really.If blue and red only differ in color, we should expect

Pc =
1
2 Pbb = Prb =

1
4

The ratio Pc
Pbb
should actually changewith the introduction of the red bus!

Back
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Cross Validation: Results

# groups = 3, # products = 100, # folds = 5

Back
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Statistics for Full Sample

Table: Average characteristics of all cars, (N = 557)
Mean Std. Dev. Median Min Max t-stat

Price .862 8.983 -2.516 -8.368 43.351 1.06
Miles per Dollar 2.175 .641 2.094 1.055 6.437 -2.78
AC .275 .424 0 0 1 -0.49
Miles per gallon 2.133 .552 2.07 1 5.3 -1.45
Space 1.263 .216 1.223 .79 1.888 -0.13
Horse Power .409 .098 .385 .207 .888 0.23
Market Share .001 .001 0 0 0.006 0.00
Yearly Observations 3.899 3.857 2 1 20 -10.42
Entry Year 1980 6.511 1981 1971 1990 4.62
Exit Year 1984 6.101 1986 1971 1990 -20.41
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BLP Application: Evolution of Size
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BLP Application: First Step Group Fixed Effects
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