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In general, the practitioner faces the challenge of specifying the nesting structure ex-ante
— Mis-specification of nests can lead to biased estimates Fosgerau et al. (2024)
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This paper: Estimating nests in discrete choice models

Methodology to estimate the nesting structure as well as preference parameters

Nesting structure is recovered from aggregate market share data + product characteristics

Two-step estimation procedure:

1. Use k-means clustering to estimate the nesting structure Bonhomme and Manresa (2015):
> Marginal effect of covariates is common across products in the same nest
2. Estimate model parameters as if the groups where known Berry (1994)

— We exploit the structure of the model, the availability of many markets and of many products
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Empirical model



Discrete choice model with nested logit shocks

— Consider the indirect utility model for agent i when choosing j in market m:
Vijm = 6jm + Eijm
— Choice of j based on the maximization of the utiliy:

]P)jm = P(Vum > Vij’m VJ, #J)
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Discrete choice model with nested logit shocks

— Consider the indirect utility model for agent i when choosing j in market m:
Vijm = 6jm + Eijm
— Choice of j based on the maximization of the utiliy:

]P)jm = P(Vum > Vij’m VJ, #J)

— Assume products are partitioned in K groups, and (g1, ..., EiJm) ~ exp( - Z,’le(zjeBK e‘ﬁ)“km):

Ojm g k() _
e kD ( ZdeBkU) e =z )rr 0_1
]P)jm = - (M

Sdm !
Z;; (ZdeB/ e )U—

5/34



Nested logit as sequential choice
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Nested logit as sequential choice

Commute

Choice of option j within nest k()

fgﬂL k() 9jm
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Nested logit and substitution patterns

Group correlation allows for more flexible substitution patterns

j i ‘96m op - .
5 (1 = T OB = (1 = Vi) g pien 165 =
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Sj.’,m ((O'k(/) - 1)ako> i mikGy — Py m)ap, Pji'm if j € By(j
66/ . )
]P)J map, P/m |f_j, S Bk/ ?é Bk(_l)
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5 (1 = T OB = (1 = Vi) g pien 165 =
j 36}/ m .
Sj.’,m ((O'k(/) - 1)ako> i mikGy — Py m)ap, Pji'm if j € By(j
66/ . )
]P)J m[)p, P/m |f_j, S Bk/ ?é Bk(_l)

ok can be interpreted as degree of within-group independence:

k' — less within-group correlation = less within-group substitution

— Higher o
— Ifok =1 = back to logit

— 0% € (0, 1) to be consistent with utility maximization
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Outline

1. Empirical model
1.1 Identification



Toward a linear regression equation

Recall:

Sdm
Sdes, € 7*
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Toward a linear regression equation

Assume 6;m = BxXjm + BpPjm + &jm-
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Toward a linear regression equation

Assume 6;m = BxXjm + BpPjm + &jm-

Substituting:
Xim + im+ & . ;
logPj, = BoXjm ’8/':5)”" im + (o-k(/) - 1)log IVkm(’) —loglVy,
o
k(j k(j k(j
— X(J) Xim + BpU) Pjm + /lm(J) +Ejm,
fi—’f( fi”( (k) -1) log VK9 _1og IV,

(o

with an slight abuse of notation for &,
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Intuition of nest identification

k(j k(j k(j
102 Pjm = B Xjm + BaY pjm + Ejm + Ap,
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Intuition of nest identification

k k k(j
log ij = U)XJm +8 (})ij +&jm + /lm(]):

— Key observation: Group-specific intercept and slope common for products in the same group!
— Intuition:

— The marginal effect of variation in covariates varies by nest
— 1IA within a nest: only j and j’ covariates affect log ]E"’"

— Not lIA across nests: If k(j) # k(j’), log also function of /lk(” and /lk(’ )
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Endogenous prices

Assume zj,, exogenous shifter of prices.
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Endogenous prices

Assume zj,, exogenous shifter of prices.
Pricing equation:
Pim = ¥YxXim + YzZjm + Vjm, IE[ij. fjmlxjm, ij] =0

Substitute into:
k(j k(j k(j
log ]P)jm = IBXU)ij +ﬁp0)pjm + gjm + /lmU)
— Classify on reduced-form:
sk sk(j k(j
log Pjm = ﬁx(l) Xjim + :Bz(l) Zimt+  Vjm +/1m(])y
B 45y By Em+Bp” Vim
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Outline

1. Empirical model

1.2 Estimation



Estimation of groups

Group-fixed effect estimator defined by the following clustering problem:

J

arg min Z Z 10g Pjom — (BX Zjm + BiXjm + Ay ))
k), k(D)) =1
Bl pal, Ak

Combinatorial, non-convex problem!
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Estimation of groups

Group-fixed effect estimator defined by the following clustering problem:

M J
2
argmin > " (102 Pim — (B5zim + Blxjm + 1)
k), k(D)) =1
B..pK.ay,L Al
Combinatorial, non-convex problem!

Solution: two-step algorithm
1. Classify products using clustering algorithm following Bonhomme and Manresa (2015)

2. Conditional on classification, estimate preference parameters 8 and o following Berry (1994)

Why two steps? 12/34



Two-step strategy
First Step: Classification

1 Let (B0, ..., g0, 210, . AX°) be a starting value.
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2
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Two-step strategy
First Step: Classification

1.
2.

Let (310, ..., BK0, 10, ., A15°) be a starting value.
For (3", ... ,ﬂK'S,/lf's, ,/l',\j,'s) , compute for all j € J:
5 2
k(j)**! = arg min Z (log Pim— (,Bﬁ‘szj'm +,3§’sxjm + Aﬁ;s)) )

ke(l,..., K}

to compute grouping structure 85!,

. Compute:

(ﬂ1’5+1,...,ﬂK'$+1 /lK'S+] ...,/lﬁ'ﬁl):

Bl B AL A 21 m:I

Repeat until convergence of parameters.
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Two-step strategy

Second step estimation

Once we have grouping structure {k(1), ..., k(J)}, estimate 8 and o as if groups were known
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Two-step strategy

Second step estimation

Once we have grouping structure {k(1), ..., k(J)}, estimate 8 and o as if groups were known

We follow Berry (1994):

Pjm
log 5= = Bopjm + BroXim + (o O — 1) 10g B mik(j) + Eim

Instrument for prices, zj,, + instrument for log P; k()

BpPim*PxXjm
e ok

Pj mik(j) =

BpPjm*BxXjm
— ==
Z de Bk(j) € k)
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Two-step strategy

Second step estimation

Once we have grouping structure {k(1), ..., k(J)}, estimate 8 and o as if groups were known

We follow Berry (1994):

Pim
log — Porn, = BpPjm + PxXjm + (o kW) 1) log Pj mik() + &jm

Instrument for prices, zj,, + instrument for log P; k()

BpPim*PxXjm
e o0 exp(Xjm)
. PR X _ J
]P)j,mlk(.l) - ﬁppjm+ﬁxxjm == ij -

i i EXP( X
ZdEBk(j) e ok ZJ ki) PCy/m)

14/34



Consistency and statistical properties



Regularity conditions with unknown nests

Regularity conditions to ensure consistent classification:
~ K fixed. Let J — 0o, M — co, and M — ( CIIEESD
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Regularity conditions with unknown nests

Regularity conditions to ensure consistent classification:
K fixed. Let J — 0o, M — oo, and 2 — (0 EIIZESSD
Thin tails

Variation in Xjn, zj, conditional on groups

/lf(n(j)

is a random variable that diverges when J — co. Conditions so they are well behaved:

— Balanced nests: [Bx| = Op(J)fork =1,... K
— Normalization by log J to stay in compact space + conditions so that log JA% (J) is well-defined
— Sequence (01,5, ---, Tok,4) ., such that Afn(f) is defined when J grows

— Group separation: cannot have g¥ = g% and AX = AX for all m for some k # k’
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Regularity conditions with unknown nests

Regularity conditions to ensure consistent classification:
~ K fixed. Let J — 0o, M — o0, and 21 — (0 IIZESSD
Thin tails

Variation in Xjn, zj, conditional on groups
L
/lmU)

is a random variable that diverges when J — co. Conditions so they are well behaved:

— Balanced nests: [Bx| = Op(J)fork =1,... K
— Normalization by log J to stay in compact space + conditions so that log JA% (J) is well-defined
— Sequence (01,5, ---, Tok,4) ., such that Afn(f) is defined when J grows

— Group separation: cannot have g¥ = g% and AX = AX for all m for some k # k’

= Asymptotic super-consistency to the infeasible estimator where the groups are known
— Convergence rate is Op,(JM™) for any n > 0
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Monte Carlo



Monte Carlo design: Data generating process

Fix K = 3.Set o = (0.2,0.3, 0.6). Classify products using uniform draws k(j)
Models for the average utility ¢;,, and prices p;, are given by:

Ojm = BpPjm + BxXjm + &jm  and  pjm = MCjm + p - Ejm
Generate data as follows:

Kliia /011 03 Xjm
[ﬂkx] : N([O]'[M 1]) = lmcjm‘ 0.3
mc : gjm

0

mC’

1
0

~Uf1

1 03 0

0
1

)

oK)
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Results

Results of 50 Bootstrap iterations

ﬁp Be T (o) g3

J M Runtime Matched True -1 1 0.2 0.3 0.6

100 10 00:02 0.996 | Meanpg | -0.992  0.991 0.189  0.297 0.602
Std B 0.032 0.033 0.034 0.024 0.007

100 50 00:25 1.0 | MeanpB | -1.001 0.998 0.2 0.3 0.6
Std B 0.01 0.011 0.001 0.002 0.003

100 100 01:07 1.0 | Meanp -1.0 1.0 0.2 0.3 0.6
Stdp | 0.006 0.007 0.001 0.001 0.003

500 10 00:06 0.995 | Meanpg 1.0  0.998 0.199 0.298 0.6
Std B 0.015 0.02 0.006 0.016 0.003

500 50 07:14 1.0 | Meanp -1.0  0.999 0.2 0.3 0.6
Stdp | 0.004 0.004 0.0 0.001 0.001

500 100 29:24 1.0 | Meanp 1.0 0.999 0.2 0.3 0.6
Stdg | 0.003 0.003 0.0 0.0 0.001

1000 10 00:12 1.0 | Meanp 1.0 0.999 0.199 0.3 0.6
Sstd3 | 0.007 0.007 0.003 0.001 0.002

1000 50 44:57 1.0 | Meanp -1.0 1.0 0.2 0.3 0.6
Stdg | 0.002 0.003 0.0 0.0 0.001

1000 100 1:14 1.0 | Meanp 1.0 0.999 0.2 0.3 0.6
Stdg | 0.002 0.002 0.0 0.0 0.001

17/34



Extensions



Outline

4. Extensions
4.1 Choosing the number of groups



Choosing K: Cross-validation with Elbow method

So far we have assumed the number of groups is known.

In practice, we can also estimate the number of groups using a V-fold cross-validation procedure.

For k e {1, ..., K}
— Divide products into N equal subsets, Py, ..., Py.
— Pick subset P, and estimate grouping structure and grouping parameters in the other N — 1 parts.

Classify products across estimated groups in part P,, and compute out-of-sample MSE

MSE, (k) = J M Z Z(yf r’;(l)n k(J) )2

m=1 jeP,

Take average across /V folds:

P

MSE (k) = % Z MSE, (k)
n=1

Choose k according to

= {k(j)|where slope of MSE (k) changes} 18/34



Estimating the Number of Groups: Monte Carlo
Set K¥ = 3, the total number of products J = 500, and the total number of markets is M = 10.

o
3
O

400

Sum of Squared Residuals

—— Match rate, train

Match rate, test
SSR, test

Match rate, %

200

T T T T T T

1 2 3 4 5 6
Number of groups 19/34



Outline

4. Extensions

4.2 Introducing Consumer’s Heterogeneity



Individual heterogeneity with observed conditional shares

Assume heterogeneity can be described by types t (e.g. income quintiles) and utility given by:

t _ ot t
6jm = BpXjm + fjm

20/34



Individual heterogeneity with observed conditional shares

Assume heterogeneity can be described by types t (e.g. income quintiles) and utility given by:
8ty = Bhxim + £5
If choices by type P;m = P,,(jlw?) observed are, then:

log —,Bk o Xjm + &jm + (O k() — 1) log lett(j)’m — log /V,f,
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Individual heterogeneity with observed conditional shares

Assume heterogeneity can be described by types t (e.g. income quintiles) and utility given by:

8 = ﬁf,ij + ffm
If choices by type P;m = P,,(jlw?) observed are, then:
log —,Bk o Xjm + &jm + (O k() — 1) log lett(j)’m — log /V,f,

Two cases:
1. No common nesting structures: classify even type-by-type

2. Common nesting structures: solve joint problem

20/34
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4. Extensions

4.3 Higher-level nesting structures



Higher-level Nesting Structures

Upstream and downstream nests given by Ay, ..., Ay and By, ..., Bk, respectively.
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Higher-level Nesting Structures

Upstream and downstream nests given by Ay, ..., Ay and By, ..., Bk, respectively.
Log choice probabilities can be written as:
10g P = B5Xjm + (% = D 1og IVE + (" — 1) log IV — log IV,

so that
. _ pko. k n
logPjm = B"Xjm + Ay, + A7,
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Higher-level Nesting Structures

Upstream and downstream nests given by Ay, ..., Ay and By, ..., Bk, respectively.
Log choice probabilities can be written as:

10g P = B5Xjm + (% = D 1og IVE + (" — 1) log IV — log IV,
so that

log Pjm, = ,Bkam + /lﬁ, + A0

We can run same classification algorithm!
— Note: needs normalization of some 1% = 0 to avoid co-linear group-market fixed effects.

21/34



Empirical application: Demand for beer



Nielsen 1Q data

Data Description:

— We define products as Universal Product Codes (UPCs)

Focus on UPCs categorized as beer (24,188 unique UPCs)

Define markets as states (exclude Alaska and Hawaii)

Each observation contains data on:

— Total number of sales by UPC and state
— (Weighted average) Prices
— Product characteristics: unit quantity, total units, type of beer, brand, packaging, domestic
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Nielsen 1Q data

Data Description:

— We define products as Universal Product Codes (UPCs)

Focus on UPCs categorized as beer (24,188 unique UPCs)

Define markets as states (exclude Alaska and Hawaii)

Each observation contains data on:

— Total number of sales by UPC and state
— (Weighted average) Prices
— Product characteristics: unit quantity, total units, type of beer, brand, packaging, domestic

Unbalanced panel with 2,806 unique UPCs (11.6%) and 64,497 observations:
— Keep products that are sold in at least ten states
— Cover between 61.5% to 99% of volume sales across states

— Average UPC is sold across 23.32 states ~ 50% missing markets
22/34



Summary statistics

Panel A: Full Sample Summary Statistics

Variable Mean Std. Dev. Median Min Max
Price per ml ($) 0.0063 0.0053 0.0049 0.0002 0.0519
Price ($) 10.8193 5.8026 10.7381 1.6338 25.6800
Unit quantity (units) 5.9316 5.8582 6.0000 1.0000 36.0000
Unit size (ml) 607.8046 856.3349 354.8820 207.0145 85171680

Panel B: Median Characteristics of the Top Ten National Brands

Brand Market share  Unit price/ml  Unit price  Unit quantity  Unit size (ml)
Bud Light 13.79% 0.004 9.54 6.00 354.88
Modelo 8.91% 0.004 9.90 4.00 354.88
Miller 7.92% 0.003 12.31 12.00 354.88
Coors 7.43% 0.003 12.68 12.00 354.88
Michelob 7.03% 0.004 13.26 7.00 354.88
Bud 6.71% 0.003 8.43 6.00 473.18
Corona 6.03% 0.004 11.24 6.00 354.88
Busch 3.62% 0.003 10.87 12.00 354.88
Natural 3.25% 0.002 10.74 12.00 354.88
New Belgium 2.53% 0.005 10.81 6.00 354.88

23/34



Empirical Model

We model the average utility ¢;,, as follows:

0jm = Bplog price;,, + Bs log size; + B4 log quantity; + &m
Instrument for prices:

— Gandhi-Houde instruments:

ghjl.m = Z (log size; — log sizej’-)2 and ghfm = Z (log quantity; — log quanﬁty_})z’

J/¢Brand(j,m) Jj'¢#Brand(j,m)

— Hausman instrument:

1
him = I i
im = N1 2, o8P,

m'#m

24/34



First-step: Choosing the number of groups

Sum of squared residuals
2.0e+05 3.0e+05 4.0e+05 5.0e+05

Figure: Sum of squared residuals across different number of groups
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First-step: Group characteristics

Characteristics Unc9nditiona| Conditional median values by group
median values 1 2 3 4
Unit size (ml) 354.882 354.882 354.882 354.882 354.882
Unit quantity 6.000 6.000 6.000 6.000 4.000
Unit price 10.738 10.346 10.209 11.205 10.782
Price per ml 0.005 0.005 0.004 0.005 0.006
Share of domestic beer 0.751 0.793 0.802 0.737 0.719
Share of ale 0.421 0.394 0.219 0.449 0.466
Share of regular beer 0.335 0.366 0.380 0.324 0.31
Share of stout and porter 0.079 0.050 0.029 0.077 0.121
Share of light beer 0.123 0.140 0.343 0.103 0.068
Share of other types 0.042 0.050 0.029 0.047 0.034
Share of top ten brands 0.170 0.207 0.579 0.108 0.101
# of products 2806 658 242 1103 803
Label Regular Light Regular Craft
Lager Beer Non-Lager Beer
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Second-step results

Table: Estimation Results for Nested Logit with k* = 4

OLS \Y
log unit size 0.070 (0.006) 0.340 (0.025)
log upc quantity 0.080 (0.005) 0.443(0.027)
log price -0.054 (0.006) -0.419 (0.034)
o 0.142 (0.001) 0.525 (0.014)
o 0.343(0.002) 0.809 (0.016)
o3 -0.015 (0.001)  0.338 (0.013)
o4 -0.320 (0.001)  0.044 (0.015)

Own-price elasticity
Cross-price elasticity

1.357 (1.808)
-0.001 (0.006)

-3.471(3.900)
0.003 (0.019)

Market Fixed Effects

IV Type

Number of Products
Number of Observations

v

v
ghy, ghy

2806
64497
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Substitution patterns: Within-group price elasticities

Own-price elasticities for Group 1

Own-price elasti

ties for Group 2

Own-price elasticities for Group 3

Own-price elasticities for Group ¢
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Substitution Patterns: Cross-group Cross-price Elasticities

Cross-price elasticities across groups

8000 -
mean = 0.0002
std = 0.0006
6000 |
>
=)
°
S 4000 |
[m)]
2000 |
O L 1 1 1 1 1
0.000 0.002 0.004 0.006 0.008
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Toward more flexible substitution patterns: Nested logit vs. mixed logit

Mixed Logit: Logit + Random coefficients in preferences with heterogeneity across consumers

+ Most flexible model in terms of substitution patterns
— Nested Logit is a particular case of Mixed Logit with group dummies
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Toward more flexible substitution patterns: Nested logit vs. mixed logit

Mixed Logit: Logit + Random coefficients in preferences with heterogeneity across consumers

+ Most flexible model in terms of substitution patterns
— Nested Logit is a particular case of Mixed Logit with group dummies

- Non-linear estimation: numerical integration, no closed-form demand, numerical instability
— Dube, Fox and Su (2012), Knittel and Metaxoglou (2014)

- Cannot capture substitution on unobservable components of utility
— e.g. neighborhood choice and preferences for gentrification
Data Driven Nested Logit:
- More restrictive substitution patterns
+ Closed form solutions for choice probability — Useful for a large set of applications

+ Can capture data-driven dimensions of substitution that are ex-ante unobservable through grouping
structure — e.g. neighborhood choice and data-driven way of defining gentrification
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Empirical comparison with mixed logit model

We estimate the following mixed-logit model using PyBLP Conlon and Gortmaker (2020):
Ujjm = 6jm + Uijm + €jjm,

where
Ojm = Bplog prize;,, + Bslog size; + B4log quantity; + &jm,

and ujjm is drawn from
Mijm = (O-pVi) log Pjm:

where o, governs the variance of the idiosyncratic component and v; ~ N(0, 1).
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Mixed-Logit estimation results

Panel A: Linear Coefficients B

log price -3.775 (0.090)
log unit size 3.077 (0.062)
log unit quantity 3.222 (0.062)
Panel B: Non-linear Coefficients op

log price 0.002 (0.0003)
Mean own-price elasticity -4.683 (2.863)
Mean cross-price elasticity 0.002 (0.005)
Market Fixed Effects v

IV Type Gandhi-Houde
Number of Products 2806
Number of Observations 64497
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Comparison: Matrix of price elasticities

Product ID
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(a) Nested logit (k* = 4) (b) Mixed Logit
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Conclusions and next steps

Conclusions:
— Proposed a two-step estimator to estimate nesting structure
— Showed conditions for consistency of estimator

— Empirical application based on US beer market shows reasonable results and rich substitution patterns
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Conclusions and next steps

Conclusions:

— Proposed a two-step estimator to estimate nesting structure

— Showed conditions for consistency of estimator

— Empirical application based on US beer market shows reasonable results and rich substitution patterns

Next steps:

— Show consistency in other nested demand structures (e.g. Type Il EV, nested CES demand)

— Extend empirical applications
— Demand for beer: Add consumer heterogeneity by linking to data on demographics (ACS)
— Spatial:
> Labor markets clusters: Is NYC a closer substitute to SF or Newark?
> Defining market structure for spatial applications: what'’s a neighborhood?

— Trade: Revisit CES nested demand a |4 Broda and Weisntein (2006)
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Thanks!



Appendix



Why asymptotics on M?
Graphical toy example: playing in the dark

You can't see
Different shapes are placed in different urns

Every minute m, you can learn by touching an
unknown shape from an urn for 5 seconds

Your goal is to get as many shapes through the
box as possible

The more minutes m, the more you learn!
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Why asymptotics on M?

Simplified example
— Consider the following simplified model with G = 2:
Vim = air + Vim, ki €{1,2}.
— We characterize the misclassification probability:
Pr(ki() = 2|ki = 1) = Pr((¥; - @)’ < (7; - )’
— If v, are iid normal (0, o%) and @; < a5 then this is:

@ ra ) - 1—<I>[@(M ))

PI‘(V,’ > 5 - =

ki =1).

> ¢

which vanishes exponentially fast as M increases.

— Intuition: When M grows
— Mean y; converges to a;
— If mis-classified, then error y; — @, eventually should become larger than y; — a
— Every mis a chanve to learn: With enough opportunities, we'll eventually learn the truth!
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